Skip to main content
Log in

Quantum Identity Authentication Scheme of Vehicular Ad-Hoc Networks

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the development of the intelligent transportation system (ITS) and increasing application of vehicular ad-hoc networks (VANETs), the security of VANETs has become a crucial issue for VANETs and ITS. In this study, we propose a quantum VANETs protection scheme to address the security issue of vehicular identity authentication. It based on BB84 quantum key distribution protocol and quantum mechanics. Furthermore, the novel quantum scheme can defend most VANETs-aimed attacks. It also can be applied on connection of vehicle to everything (V2X), this is because reliability and security problem can be solved in proposed quantum scheme. By tactfully exploiting properties of quantum mechanics, our proposed scheme offers remarkable advantages which include remote identity authentication, identity revocation and irreversibility. The security analysis shows that our proposed scheme can further insure the security of VANETs identity authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raya, M., Hubaux, J.P.: Securing Vehicular Ad Hoc Networks[C]. In: International Conference on Pervasive Computing and Applications. IEEE, pp. 39–68 (2007)

  2. Lin, X.D., Sun, X.T., Ho, P.H., Shen, X.M.: Gsis: a secure and privacy- preserving protocol for vehicular communications. IEEE Trans. Veh. Technol. 56(6), 3442–3456 (2007)

    Article  Google Scholar 

  3. Cunha, F., Villas, L., Boukerche, A., Maia, G., Viana, A., Mini, R.A.F., Loureiro, A.A.F.: Data communication in VANETs: protocols, applications and challenges. Ad Hoc Networks 44, 90–103 (2016)

    Article  Google Scholar 

  4. Lehner, A., Graca, C.R., Strang, T.: A multi-broadcast communication system for high dynamic vehicular ad-hoc networks. IEEE ICUMT. 2(2), 286–302 (2014)

    Google Scholar 

  5. Jianhong, Z., Min, X., Liying, L.: On the security of a secure batch verification with group testing for VANET. Int. J. Netw. Secur. 16(5), 355–362 (2014)

    Google Scholar 

  6. Horng, S.J., Tzeng, S.F., Pan, Y., Fan, P., Wang, X., Li, T., Khan, K.M.: b-specs+: Batch verification for secure pseudonymous authentication in VAENT. IEEE TIFS. 8(11), 1860–1875 (2013)

    Google Scholar 

  7. Lee, C.C., Lai, Y.M.: Toward a secure batch verification with group testing for VAENT. Wirel. Netw. 19(6), 1441–1449 (2013)

    Article  Google Scholar 

  8. Horng, S.J., Tzeng, S.F., Li, T., Wang, X., Huang, P.H., Khan, M.K.: Enhancing security and privacy for identity-based batch verification scheme in VAENT. IEEE Trans. Veh. Technol. 99, 1–1 (2015)

    Google Scholar 

  9. Chien, H.Y., Jan, J.K., Tseng, Y.M.: Forgery attacks on multisignature schemes for authenticating mobile code delegates. IEEE Trans. Veh. Technol. 51(6), 1669–1671 (2003)

    Article  Google Scholar 

  10. Chang, C.C., Hwang, K.F.: Some forgery attacks on a remote user authentication scheme using smart cards. Inform. 14(3), 289–294 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Wu, T.C., Hsu, C.L.: Cryptanalysis of digital multisignature schemes for authenticating delegates in mobile code systems. IEEE Trans. Veh. Technol. 52(2), 462–464 (2003)

    Article  Google Scholar 

  12. Pironio, S., Acn, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New. J. Phys. 11(4), 1–2 (2009)

    Article  Google Scholar 

  13. Harn, L., Hsin, W.J., Mehta, M.: Authenticated diffie-hellman key agreement protocol using a single cryptographic assumption. IEE P-Commun. 152(4), 404–410 (2005)

    Article  Google Scholar 

  14. Lin, C.L., Wen, H.A., Hwang, T., Sun, H.M.: Provably secure three-party password-authenticated key exchange. Ieice. T. Fund. Electr. 87(11), 2990–3000 (2004)

    Google Scholar 

  15. Sun, H.M., Chen, B.C., Hwang, T.: Secure key agreement protocols for three-party against guessing attacks. J. Syst. Softw. 75(1), 63–68 (2005)

    Article  Google Scholar 

  16. Wen, H.A., Lee, T.F., Hwang, T.: Provably secure three-party password-based authenticated key exchange protocol using weil pairing. IEE P-Commun. 152(2), 138–143 (2005)

    Article  MATH  Google Scholar 

  17. Chen, I.C., Hwang, T., Li, C.M.: Efficient one-out-of-two quantum oblivious transfer based on four-coherent-state postselection protocol. Phys. Scripta. 78(3), 035005 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hazay, C.: Oblivious polynomial evaluation and secure set-intersection from Al- Gebraic PRFs. Springer, Berlin (2015)

    MATH  Google Scholar 

  19. Dirac, P.A.M.: The physical interpretation of quantum mechanics. Proc. R. Soc. Lond. A 26(4), 1–40 (1927)

    MATH  Google Scholar 

  20. Dirac, P.A.M., Polkinghorne, J.C.: The principles of quantum mechanics. Clarendon Press, Oxford (1958)

    Book  Google Scholar 

  21. Stewart, B.: An account of some experiments on radiant heat, involving an extension of prevost’s theory of exchanges. T. Roy. Soc. Edin-Earth. 22(1), 1–20 (2013)

    Google Scholar 

  22. Hottel, H.C., Cohen, E.S.: Radiant heat exchange in a gas enclosure: Allowance for nonuniformity of gas temperature. Aiche. J. 4(1), 3–14 (1958)

    Article  Google Scholar 

  23. Bohr, N.: 3 c on the constitution of atoms and molecules. Philos. Mag. 26(151), 1–25 (1913)

    Article  ADS  MATH  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L., et al.: Quantum Computation and Quantum Information[J]. Math. Struct. Comput. Sci. 21(1), 1–59 (2002)

    MathSciNet  Google Scholar 

  25. Mayers, D.: Unconditional security in quantum cryptography ACM (2001)

  26. Bennett, C.H., Brassard, G.: Quantum Cryptgraphy: public key distribution and coin tossing. In: IEEE international conference on computers, systems, and signal processing, Bangalore, India (1984)

  27. Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)

    Article  ADS  Google Scholar 

  28. Sano, Y., Matsumoto, R., Uyematsu, T.: Secure key rate of the bb84 protocol using finite sample bits. J. Phys. A: Math. Theor. 43(49), 495302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cai, R., Scarani, V.: Finite-key analysis for practical implementations of quantum key distribution. New. J. Phys. 11(4), 045024 (2009)

    Article  ADS  Google Scholar 

  30. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature. 299(5886), 802–803 (1982)

    Article  ADS  MATH  Google Scholar 

  31. Barnett, S.M., Pegg, D.T.: On the Hermitian optical phase operator. Opt. Acta. Int. J. Opt. 36(1), 7–19 (1989)

    Google Scholar 

  32. Ni, Z.X.: Nonlinear lie algebra and ladder operators for orbital angular momentum. J. Phys. A: Gen. Phys. 32(11), 2217 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Price, W.C., Chissick, S.S., Brody, T.A.: The uncertainty Principleand-Foundations of Quantum Mechanics. J. Wiley, New York (1977)

    Google Scholar 

  34. Dirac, P.A.M.: Quantised singularities in the electromagnetic field. P. Roy. Soc. A. Mat. 133(133), 60–72 (1931)

    Article  ADS  MATH  Google Scholar 

  35. Einstein, A.: Physics and reality. J. Franklin. I. 221(3), 349382 (1936)

    Google Scholar 

  36. Agassi, J., Faraday, M.: Faraday as a natural philosopher [1971]. Brit. Med. J. 2(4882), 287 (1971)

    Google Scholar 

  37. Kauffman, L.H., Lomonaco, S.J.: Comparing quantum entanglement and topological entanglement. New. J. Phys. 4(1), 73 (2002)

    Article  ADS  Google Scholar 

  38. Scarani, V., Renner, R.: Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way postprocessing. Phys. Rev. Lett. 100(20), 200501 (2008)

    Article  ADS  Google Scholar 

  39. Huang, J.Z., Weedbrook, C., Yin, Z.Q., Wang, S., Li, H.W., Chen, W., Guo, G.C., Han, Z.F.: Quantum hacking on continuous-variable quantum key distribution system using a wavelength attack. Phys. Rev. A. 87(6), 19932001 (2013)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Fundamental Research Funds for the Central Universities of Central South University (Project No:2018zzts025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhou, K. & Liao, Q. Quantum Identity Authentication Scheme of Vehicular Ad-Hoc Networks. Int J Theor Phys 58, 40–57 (2019). https://doi.org/10.1007/s10773-018-3908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3908-y

Keywords

Navigation