Skip to main content
Log in

A Blind Signature Protocol with Exchangeable Signature Sequence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, an arbitrated blind signature scheme with one particle is proposed, which can exchange the blinding and signing process. For the quantum blind signature, this paper analyzes the traceability depends on whether or not to get the help of the trusted third party arbitration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron Lett. 31(14), 1136C1137 (1995)

    Article  Google Scholar 

  2. Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron Lett. 32(9), 811C813 (1996)

    Google Scholar 

  3. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv:quant-ph/0105032v2 (2001)

  4. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  5. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79, 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  7. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B. 17, 415 (2008)

    Article  ADS  Google Scholar 

  9. Yang, YG, Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G. Phys. Mech. Astron. 51, 1079–1088 (2008)

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with Multi-Signers. Commun. Theor. Phys. 54, 84 (2010)

    Article  ADS  Google Scholar 

  11. Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)

    Article  ADS  Google Scholar 

  12. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B. 19, 060307 (2010)

    Article  ADS  Google Scholar 

  13. Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quant. Inf. Process. 11(2), 455–463 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  14. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  15. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  16. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  17. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)

    Article  ADS  Google Scholar 

  18. Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(7), 3127–3141 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89, 015102 (2014)

    Article  ADS  Google Scholar 

  20. Zhang, K.J., Jia, H. Y.: Cryptanalysis of a quantum proxy weak blind signature scheme. Int. J. Theor. Phys. 54, 582 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sun, H. W., Zhang, L., Zuo, H. J., et al.: Offline arbitrated quantum blind dual-signature protocol with better performance in resisting existential forgery attack. Int. J. Theor. Phys. 57, 2695 (2018)

    Article  Google Scholar 

  22. Chaum, D.: Elections with unconditionally-secret ballots and disruption equivelent to breaking RAS advances in cryptology. In: Proceedings of Euro-Crypto88, pp. 177–189. Springer, Berlin (1988)

  23. Brands, S.: Untraceble off-line cash in wallet with observers. Advances in cryptology. In: Proceeding of Crypto93, pp. 302–318. Springer, Berlin (1994)

  24. Wang, T.Y., Cai, X.Q., Zhang, J.Z.: Off-line e-cash system with multiple banks based on elliptic curve. Comput. Eng. Appl. 33(15), 155–157 (2007)

    Google Scholar 

  25. Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549–558 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651–1657 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Shi, W.-M., Zhang, J.-B., Zhou, Y.-H., et al.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14, 3019–3030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fan, L., Zhang, K.J.: A novel quantum blind signature scheme with four-particle ghz states. Int. J. Theor. Phys. 55, 1028–1035 (2016)

    Article  MathSciNet  Google Scholar 

  29. Fan, L.: A novel quantum blind signature scheme with four-particle cluster states. Int. J. Theor. Phys. 55, 1558–1567 (2016)

    Article  ADS  Google Scholar 

  30. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)

    Article  ADS  Google Scholar 

  31. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  32. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on experimental demonstration of a quantum protocol for byzantine agreement and liar detection. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  33. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on quantum key distribution without alternative measurements. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  Google Scholar 

  34. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradlerdusek protocol. Quantum. Inf. Comput. 7, 329 (2007)

    MathSciNet  MATH  Google Scholar 

  35. Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  36. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  37. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  Google Scholar 

  38. Wojcik, A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  39. Wojcik, A.: Comment on quantum dense key distribution. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  40. Cai, Q.Y.: The ping-pong protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  41. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  42. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: quantum exam. Phys. Lett. A 360, 748 (2007)

    Article  ADS  Google Scholar 

  43. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus n-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  44. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  45. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  46. Wang, T.-Y., Cai, X.-Q., Ren, Y.-L., Zhang, R.-L.: Security of quantum digital signatures for classical messages. Sci. Rep. 5, 9231 (2015)

    Article  Google Scholar 

  47. Wang, T.-Y., Cai, X.-Q., Zhang, R.-L.: Security of a sessional blind signature based on quantum cryptograph. Quantum. Inf. Process. 13, 1677–1685 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  48. Cai, X.-Q., Zheng, Y.-H., Zhang, R.-L.: Cryptanalysis of a Batch Proxy Quantum Blind Signature Scheme. Int. J. Theor. Phys. 53, 3109–3115 (2014)

    Article  Google Scholar 

  49. Boykin, P.O., Roychowdhury, V.: Optiaml encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  50. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  51. Zhang Q., Yin J., Chen T.Y., et al.: Experimental fault-tolerant quantum cryptography in a decoherence-free subspace. Phys. Rev. A 73(2), 020301 (2006)

    Article  ADS  Google Scholar 

  52. Bennett C.H., Brassard, G.: Quantum cryptography: pubic key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (1984)

  53. Lo, H.-K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  54. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distri- bution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61701035 and the Fundamental Research Funds for the Central Universities (Beijing University of Posts and Telecommunications) under Grant No. 2017RC34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L. A Blind Signature Protocol with Exchangeable Signature Sequence. Int J Theor Phys 57, 3850–3858 (2018). https://doi.org/10.1007/s10773-018-3897-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3897-x

Keywords

Navigation