Skip to main content
Log in

An Optimized Quantum Representation for Color Digital Images

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the continuous development of quantum computation, quantum mechanics has been widely exploited to meet the storage requirement of high definition image. In this paper, an optimized quantum representation for color digital images (OCQR) is proposed, which makes full use of quantum superposition characteristic to store the RGB value of every pixel. Compared with latest novel quantum representation of color digital images (NCQI), OCQR uses nearly one-third times the qubits to store the pixel value. Meanwhile, some image processing operations related to color information can be executed more simultaneously and conveniently based on OCQR. Therefore, the proposed OCQR model is better suited to represent the quantum color image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring[C].. In: 1994 Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search[C]. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp 212–219. ACM (1996)

  3. Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics[C]. In: AeroSense 2003, pp. 137–147. International Society for Optics and Photonics (2003)

  4. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems[J]. Quantum Inf. Process 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  5. Latorre, J.I.: Image compression and entanglement[J]. arXiv:quant-ph/0510031 (2005)

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations[J]. Quantum Inf. Process 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sang, J., Wang, S., Shi, X., et al.: Quantum realization of arnold scrambling for IFRQI[J]. Int. J. Theor. Phys., 1–16 (2016)

  8. Sun, B., Iliyasu, A.M., Yan, F., et al.: An RGB multi-channel representation for images on quantum computers[J]. J. Adv. Comput. Intell. Intell. Inf. 17(3), 404–417 (2013)

    Article  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: A novel enhanced quantum representation of digital images[J]. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio[J]. Quantum Inf. Process 14 (11), 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images[J]. Quantum Inf. Process 16(2), 42 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Liu, K., Zhang, Y., Lu, K., et al.: Restoration for noise removal in quantum images[J]. Int. J. Theor. Phys., 1–20 (2017)

  13. Li, P., Liu, X., Xiao, H.: Quantum image median filtering in the spatial domain[J]. Quantum Inf. Process 17(3), 49 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Yuan, S., Mao, X., Zhou, J., et al.: Quantum image filtering in the spatial domain[J]. Int. J. Theor. Phys., 1–17 (2017)

  15. Zhou, R.G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography[J]. Quantum Inf. Process 16(9), 212 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Li, P., Zhao, Y., Xiao, H., et al.: An improved quantum watermarking scheme using small-scale quantum circuits and color scrambling[J]. Quantum Inf. Process 16 (5), 127 (2017)

    Article  ADS  MATH  Google Scholar 

  17. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits[J]. Quantum Inf. Process 15(5), 1–16 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, N., Dang, Y., Wang, J.: Quantum image matching[J]. Quantum Inf. Process 15(9), 1–30 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yang, Y.G., Zhao, Q.Q., Sun, S.J.: Novel quantum gray-scale image matching[J]. Optik 126(22), 3340–3343 (2015)

    Article  ADS  Google Scholar 

  20. Dang, Y., Jiang, N., Hu, H., et al.: Analysis and improvement of the quantum image matching[J]. Quantum Inf. Process 16(11), 269 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Zhou, R.-G., Tan, C., Ian, H.: Global and Local Translation Designs of Quantum Image Based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhou, R.-G., Liu, X.A., Zhu, C., Wei, L., Zhang, X., Ian, H.: Similarity analysis between quantum images. Quantum Inf. Process 17, 121 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, G., Song, X., Hung, W.N.N., et al.: Group theory based synthesis of binary reversible circuits[C]. In: International Conference on Theory and Applications of MODELS of Computation, pp. 365–374. Springer (2006)

  24. Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images[J]. Quantum Inf. Process 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the kind comments and professional criticisms of the anonymous reviewer. This has greatly enhanced the overall quality of the manuscript and opened numerous perspectives geared toward improving the work. This work is supported in part by National High-tech R&D Program of China (863 Program) under Grants 2012AA01A301, 2012AA010901, 2012AA010303, and 2015AA01A301. And it is partially supported by the laboratory pre-research fund (9140C810106150C81001), and by the open project of State Key Laboratory of High-end Server & Storage Technology (2014HSSA01). Moreover, it is a part of program for New Century Excellent Talents in University and National Science Foundation (NSF) China 61272142, 61402492, 61402486, 61379146, 61272483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu.

Additional information

This work is supported in part by National High-tech R&D Program of China (863 Program) under Grants 2012AA01A301, 2012AA010901, 2012AA010303, and 2015AA01A301. And it is partially supported by the laboratory pre-research fund (9140C810106150C81001), and by the open project of State Key Laboratory of High-end Server & Storage Technology (2014HSSA01). Moreover, it is a part of program for New Century Excellent Talents in University and National Science Foundation (NSF) China 61272142, 61402492, 61402486, 61379146, 61272483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Zhang, Y., Lu, K. et al. An Optimized Quantum Representation for Color Digital Images. Int J Theor Phys 57, 2938–2948 (2018). https://doi.org/10.1007/s10773-018-3813-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3813-4

Keywords

Navigation