Skip to main content
Log in

Fault-Tolerant Design of a Shift Register at the Nanoscale Based on Quantum-dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot Cellular Automata (QCA) as a novel technology in the nanometer scale has been considered as one of the substitutes to CMOS technology. The QCA helps to create faster computers with lower power consumption. On the other hand, a shift register as one of the most important logical circuit in the digital systems consists of a line of latches. Also, the QCA-based designs have more advantages compared to the conventional CMOS designs. However, some deposition defects are possible to occur in the QCA-based designs, which have necessitated the fault-tolerant structures. Therefore, this paper aims to design an optimized 2-bit universal shift register based on QCA technology through the optimized multiplexer and D flip-flop. This paper studies the functionality and the fault tolerance of the proposed universal shift register in the presence of the QCA deposition faults. The structure of the 2-bit universal register is extendable to 4-bit, 8-bit and higher. The proposed design has better performance regarding fault tolerant, complexity and area consumption compared to the current designs based on the achieved results via QCADesigner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barughi, Y.Z., Heikalabad, S.R.: A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)

    Article  MATH  Google Scholar 

  2. Gadim, M.R., Navimipour, J.N.: Quantum-dot Cellular Automata in Designing the Arithmetic and Logic Unit Systematic Literature Review Classiffication and Current Trends. J. Circ. Syst. Comput. 27(10), 1830005 (2018)

    Article  Google Scholar 

  3. Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on Nano-scale based on quantum-dot cellular automata for energy dissipation improving. Optik - International Journal for Light and Electron Optics (2018)

  4. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gupta, N., Choudhary, K., Katiyal, S.: Two bit arithmetic logic unit (ALU) in QCA. Int. J. Recent Trends Eng. Technol. 8(2), 35 (2013)

    Google Scholar 

  6. Mohammadi, Z., Mohammadi, M.: Implementing a one-bit reversible full adder using quantum-dot cellular automata. Quantum Inf. Process 13(9), 2127–2147 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Seyedi, S., Navimipour, N.J.: An optimized design of full adder based on nanoscale quantum-dot cellular automata. Optik - Int. J. Light Electron Opt. 158, 243–256 (2018)

    Article  MATH  Google Scholar 

  8. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24, 1–11 (2018)

    Article  Google Scholar 

  9. Karkaj, E.T., Heikalabad, S.R.: Binary to gray and gray to binary converter in quantum-dot cellular automata. Optik - Int. J. Light Electron Opt. 130, 981–989 (2017)

    Article  Google Scholar 

  10. Tougaw, D., Szaday, J., Will, J.D.: A signal distribution grid for quantum-dot cellular automata. J. Comput. Electron. 15(2), 446–454 (2016)

    Article  Google Scholar 

  11. Khan, A., Chakrabarty, R., De, D.: Static hazard elimination for a logical circuit using quantum dot cellular automata. Microsyst. Technol. 23(9), 4169–4177 (2017)

    Article  Google Scholar 

  12. Afrooz, S., Navimipour, N.J.: Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends. J. Circ. Syst. Comput. 26, 1730004 (2017)

    Article  Google Scholar 

  13. Naji Asfestani, M., Rasouli Heikalabad, S.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Physica B 512, 91–99 (2017)

    Article  ADS  Google Scholar 

  14. Zhang, Y. et al.: Modular design of QCA carry flow adders and multiplier with reduced wire crossing and number of logic gates. Int. J. Circ. Theory Appl. 44(7), 1351–1366 (2016)

    Article  Google Scholar 

  15. Hopfield, J., Onuchic, J.N., Beratan, D.N.: A molecular shift register based on electron transfer. Science 241(4867), 817–820 (1988)

    Article  ADS  Google Scholar 

  16. Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13(1), 198–210 (2014)

    Article  MATH  Google Scholar 

  17. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  18. Momenzadeh, M., et al.: Quantum cellular automata: New defects and faults for new devices. In: Proceedings of 18th International on Parallel and Distributed Processing Symposium, IEEE (2004)

  19. Vankamamidi, V., Lombardi, F.: Design of defect tolerant tile-based QCA circuits. In: Proceedings of the 18th ACM Great Lakes symposium on VLSI, ACM (2008)

  20. Taskin, B. et al.: A shift-register-based QCA memory architecture. ACM J. Emerg. Technol. Comput. Syst. (JETC) 5(1), 4 (2009)

    MathSciNet  Google Scholar 

  21. Katti, R., Shrestha, S.: Novel Asynchronous Registers for Sequential Circuits with Quantum-Dot Cellular Automata. In: 2012 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE (2012)

  22. Purkayastha, T., De, D., Chattopadhyay, T.: Universal shift register implementation using quantum dot cellular automata. Ain Shams Engineering Journal (2016)

  23. Das, J.C., De, D.: Operational efficiency of novel SISO shift register under thermal randomness in quantum-dot cellular automata design. Microsyst. Technol. 23 (9), 4155–4168 (2017)

    Article  Google Scholar 

  24. Katti, R., Shrestha, S.: Novel Asynchronous Registers for Sequential Circuits with Quantum-Dot Cellular Automata. In: 2012 IEEE International Symposium on Circuits and Systems, IEEE (2012)

  25. Tahoori, M.B., et al.: Defects and faults in quantum cellular automata at nano scale. In: 2004 Proceedings of 22nd on VLSI Test Symposium, IEEE (2004)

  26. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

    Article  ADS  Google Scholar 

  27. Kianpour, M., Sabbaghi-Nadooshan, R.: Optimized Design of Multiplexor by Quantum-dot CellularAutomata. Int. J. Nanosci. Nanotechnol. 9(1), 15–24 (2013)

    Google Scholar 

  28. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997)

    Article  Google Scholar 

  29. Cho, H., Swartzlander, E. E. Jr: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58(6), 721–727 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38(8), 1046–1062 (2014)

    Article  MATH  Google Scholar 

  31. Sen, B. et al.: Modular Design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Article  Google Scholar 

  32. Walus, K. et al.: QCADEsigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jafari Navimipour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrooz, S., Navimipour, N.J. Fault-Tolerant Design of a Shift Register at the Nanoscale Based on Quantum-dot Cellular Automata. Int J Theor Phys 57, 2598–2614 (2018). https://doi.org/10.1007/s10773-018-3781-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3781-8

Keywords

Navigation