Skip to main content
Log in

Quantum Adder for Superposition States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum superposition is one of the essential features that make quantum computation surpass classical computation in space complexity and time complexity. However, it is a double-edged sword. For example, it is troublesome to add all the numbers stored in a superposition state. The usual solution is taking out and adding the numbers one by one. If there are \(2^{n}\) numbers, the complexity of this scheme is \(O(2^{n})\) which is the same as the complexity of the classical scheme \(O(2^{n})\). Moreover, taking account to the current physical computing speed, quantum computers will have no advantage. In order to solve this problem, a new method for summing all numbers in a quantum superposition state is proposed in this paper, whose main idea is that circularly shifting the superposition state and summing the new one with the original superposition state. Our scheme can effectively reduce the time complexity to \(O(n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (2005)

    MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Shor, P.W.: Algorithms for Quantum Computation: Discrete Logarithms and Factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science, Santa Fe, pp. 124–134 (1994)

  4. Grover, L.K.: A fast quantum mechanical algorithm for database search. Proceedings of the 28Th Annual ACM Symposium on the Theory of Computing, pp. 212–219 (2011)

  5. Vedral, V., Barenco, A., Ekert, A.L.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Amlan, C., Susmita, S.K.: Designing quantum adder circuits and evaluating their error performance. Int. Conf. Electron. Des. 4, 1–6 (2008)

    Google Scholar 

  7. Alvarez-Rodriguez, U., Sanz, M., Lamata, L., et al.: The forbidden quantum adder. Sci. Rep. 5, 11983 (2015)

    Article  ADS  Google Scholar 

  8. Barbosa, G.: Quantum half-adder. Phys. Rev. A 73(5), 485–485 (2006)

    Article  Google Scholar 

  9. Montaser, R., Younes, A., Abdelaty, M.: New Design of Reversible Full Adder/Subtractor using R gate. arXiv:1708.00306

  10. Shekoofeh, M., Mohammad, R.: A Novel \(4\times 4\) Universal Reversible Gate as a Cost Efficient Full Adder/Subtractor in Terms of Reversible and Quantum Metrics. Mod. Educ. Comput. Sci. 11, 28–34 (2015)

    Google Scholar 

  11. Chowdhury, A.K., Tan, D.Y.W., Yew, S.L.B.: Design of full adder/subtractor using irreversible IG-a gate. Design of full adder/subtractor using irreversible IG-a gate (2015)

  12. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 5, 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 11, 4001–4026 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nan, J., Yijie, D., Jian, W.: Quantum image matching. Quantum Inf. Process. 9, 3543–3572 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Wang, J.: QRDA Quantum representation of digital audio. Int. J. Theor. Phys. 3, 1622–1641 (2015)

    MATH  Google Scholar 

  16. Wang, J., Wang, H., Song, Y.: Quantum endpoint detection based on QRDA. J. Theor. Phys. 10, 3257–3270 (2017)

    Article  MATH  Google Scholar 

  17. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 7, 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jiang, N., Wu, W., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 5, 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 1, 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Song, X.H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hillery, M, Buzek, V, Ziman, M.: Probabilistic implementation of universal quantum processors. Phys. Rev. A 2, 022301 (2012)

    MathSciNet  Google Scholar 

  22. Jones, N.C., Whitfield, J.D., Mcmahon, P.L., Yung, M.H., Meter, R.V.: Faster quantum chemistry simulation on fault-tolerant quantum computers. J. Phys. 11, 115023 (2012)

    Google Scholar 

  23. Zhou, R.-G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 1, 2511 (2017)

    Article  ADS  Google Scholar 

  24. Zhou, R.-G., Tan, C., Ian, H.: Global and Local Translation Designs of Quantum Image Based on FRQI. Int. J. Theor. Phys. 4, 1382–1398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, D, Liu, ZH, Zhu, W.M., et al.: Design of quantum comparator based on extended general toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grants No. 61502016, and the Joint Open Fund of Information Engineering Team in Intelligent Logistics under Grants No. LDXX2017KF152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Jiang, N., Hu, H. et al. Quantum Adder for Superposition States. Int J Theor Phys 57, 2575–2584 (2018). https://doi.org/10.1007/s10773-018-3779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3779-2

Keywords

Navigation