Skip to main content
Log in

A Facile Two-Step Method to Implement \(N\sqrt {i\text {SWAP}}\) and \(N\sqrt {\text {SWAP}}\) Gates in a Circuit QED

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a way for implementing a two-step \(N\sqrt {i\text {SWAP}}\) and \(N \sqrt {\text {SWAP}}\) gates based on the qubit-qubit interaction with \(N\) superconducting qubits, by coupling them to a resonator driven by a strong microwave field. The operation times do not increase with the growth of the qubit number. Due to the virtual excitations of the resonator, the scheme is insensitive to the decay of the resonator. Numerical analysis shows that the scheme can be implemented with high fidelity. Moreover, we propose a detailed procedure and analyze the experimental feasibility. So, our proposal can be experimentally realized in the range of current circuit QED techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eleuch, H., Ben Nessib, N., Bennaceur, R.: Eur. Phys. J. D 29, 391 (2004)

    Article  ADS  Google Scholar 

  2. Eleuch, H.: Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D 49, 391 (2008)

    Article  ADS  Google Scholar 

  3. Sete, E.A., Eleuch, H.: Interaction of a quantum well with squeezed light: quantum-statistical properties. Phys. Rev. A 82, 043810 (2010)

    Article  ADS  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Cambridge Series on Information and the Natural Sciences. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  5. Rips, S., Hartmann, M.J.: Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 110, 120503 (2013)

    Article  ADS  Google Scholar 

  6. Šašura, M., Buzek, V.: Multiparticle entanglement with quantum logic networks: application to cold trapped ions. Phys. Rev. A 64, 012305 (2001)

    Article  ADS  Google Scholar 

  7. Berrada, K., Chafik, A., Eleuch, H., Hassouni, Y.: Concurrence in the framework of coherent states. Quantum Inf. Process 9, 13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Sete, E.A., et al.: Using quantum coherence to generate gain in the XUV and X-ray: gain-swept superradiance and lasing without inversion. IEEE J. Sel. Top. Quantum Electron. 18, 541 (2012)

    Article  Google Scholar 

  9. Ferrando-Soria, J., et al.: A modular design of molecular qubits to implement universal quantum gates. Nat. Commun. 7, 11377 (2016)

    Article  ADS  Google Scholar 

  10. Eckert, K., et al.: Quantum computing in optical microtraps based on the motional states of neutral atoms. Phys. Rev. A 66, 042317 (2002)

    Article  ADS  Google Scholar 

  11. Isenhower, L., Urban, E., Zhang, X., et al.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  12. Kiesel, N., Schmid, C., Weber, U., et al.: Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005)

    Article  ADS  Google Scholar 

  13. Monroe, C., Meekhof, D.M., King, B.E., Itano, W.M., Wineland, D.J.: Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Fushman, I., Englund, D., Faraon, A., et al.: Controlled phase shifts with a single quantum dot. Science 2008(320), 769–772 (2008)

    Article  ADS  Google Scholar 

  15. Jones, J.A., et al.: Implementation of a quantum search algorithm on a quantum computer. Nature (London) 393, 344 (1998)

    Article  ADS  Google Scholar 

  16. Hua, M., Tao, M.J., Deng, F.G.: Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED. Sci. Rep. 5, 9274 (2015)

    Article  Google Scholar 

  17. Tanamoto, T., Liu, Y.X., Hu, X., Nori, F.: Efficient quantum circuits for one-way quantum computing. Phys. Rev. Lett. 102(10), 100501 (2009)

    Article  ADS  Google Scholar 

  18. Deutsch, D., Barenco, A., Ekert, A.: Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69, 032315 (2004)

    Article  ADS  Google Scholar 

  21. Liu, Q., Ye, L.: Implementation of a two-atom (swap)1/2 gate in cavity QED. Chin. Phys. Lett. 24, 599 (2007)

    Article  ADS  Google Scholar 

  22. Song, K.H., Zhao, Y.J., Shi, Z.G., Xiang, S.H., Chen, X.W.: Simultaneous implementation of \(n\) SWAP gates using superconducting charge qubits coupled to a cavity. Opt. Commun. 10, 1016 (2010)

    Google Scholar 

  23. Essammouni, K., Chouikh, A., Said, T., Bennai, M.: NiSWAP and NTCP gates realized in a circuit QED system. Int. J. Geom. Meth. Mod. Phys. 14, 1750100 (2017)

    Article  MATH  Google Scholar 

  24. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  ADS  Google Scholar 

  25. Beth, T., Rötteler, M.: Quantum Algorithms: Applicable Algebra and Quantum Physics. Quantum Information, Ch. 4, vol. 173, p 96. Springer, Berlin (2001)

    Google Scholar 

  26. Braunstein, S.L. et al.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)

    Article  ADS  Google Scholar 

  27. Gaitan, F.: Quantum Error Correction and Fault Tolerant Quantum Computing. CRC Press, Boca Raton (2008)

    Book  MATH  Google Scholar 

  28. Blais, A., et al.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  29. Deng, Z.J., Feng, M., Gao, K.L.: Simple scheme for the two-qubit Grover search in cavity QED. Phys. Rev. A 72, 034306 (2005)

    Article  ADS  Google Scholar 

  30. Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71, 034304 (2005)

    Article  ADS  Google Scholar 

  31. Everitt, M., Garraway, B.: Multiphoton resonances for all-optical quantum logic with multiple cavities. Phys. Rev. A 90, 012335 (2014)

    Article  ADS  Google Scholar 

  32. Chouikh, A., Said, T., Essammouni, K., Bennai, M.: Implementation of universal two- and three-qubit quantum gates in a cavity QED. Opt. Quant. Electron. 48, 463 (2016)

    Article  Google Scholar 

  33. Grochol, M., Piermarocchi, C.: Multispin errors in the optical control of a spin quantum lattice. Phys. Rev. B 78, 165324 (2008)

    Article  ADS  Google Scholar 

  34. Barnett, S.M., et al.: Fidelity and the communication of quantum information. J. Phys. A Math. Gen. 34, 6755 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Vion, D., et al.: Manipulating the quantum state of an electrical circuit. Science 296, 886 (2002)

    Article  ADS  Google Scholar 

  36. Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity or coupled to a resonator. Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  37. Gao, G.L., et al.: \(1 \rightarrow \mathrm {N}\) quantum controlled phase gate realized in a circuit QED system. Sci. China Phys. 55(8), 1422–1426 (2012)

    Article  Google Scholar 

  38. Kuhr, S., et al.: Ultrahigh finesse Fabry-Perot superconducting resonator. Appl. Phys. Lett. 90, 164101 (2007)

    Article  ADS  Google Scholar 

  39. Wallraff, A., et al.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Said.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, T., Chouikh, A. & Bennai, M. A Facile Two-Step Method to Implement \(N\sqrt {i\text {SWAP}}\) and \(N\sqrt {\text {SWAP}}\) Gates in a Circuit QED. Int J Theor Phys 57, 2536–2545 (2018). https://doi.org/10.1007/s10773-018-3775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3775-6

Keywords

Navigation