Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2192–2202 | Cite as

Reference-Frame-Independent and Measurement-Device-Independent Quantum Key Distribution Using One Single Source

  • Qian Li
  • Changhua Zhu
  • Shuquan Ma
  • Kejin Wei
  • Changxing Pei
Article

Abstract

Measurement-device-independent quantum key distribution (MDI-QKD) is immune to all detector side-channel attacks. However, practical implementations of MDI-QKD, which require two-photon interferences from separated independent single-photon sources and a nontrivial reference alignment procedure, are still challenging with current technologies. Here, we propose a scheme that significantly reduces the experimental complexity of two-photon interferences and eliminates reference frame alignment by the combination of plug-and-play and reference frame independent MDI-QKD. Simulation results show that the secure communication distance can be up to 219 km in the finite-data case and the scheme has good potential for practical MDI-QKD systems.

Keywords

Quantum key distribution Reference frame independent Measurement-device-independent Side-channel attack 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61372076, 61701375, 61705048), Shaanxi Key Research and Development Program (Grant No. 2017GY-080), the Guangxi Science Foundation (Grant No. 2017GXNSFBA198231), Foundation of Science and Technology on Communication Networks Laboratory (KX172600031) and the 111 Project (No. B08038).

References

  1. 1.
    Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Beaudry, N.J., Moroder, T., Lütkenhaus, N.: Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 101, 093601 (2008)ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Tsurumaru, T., Tamaki, K.: Security proof for quantum-key-distribution systems with threshold detectors. Phys. Rev. A 78, 032302 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Zhao, Y., Fung, C.-H.F., Qi, B., Chen, C., Lo, H.-K.: Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78, 042333 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Makarov*, V., Hjelme, D.R.: Faked states attack on quantum cryptosystems. J. Mod. Opt. 52, 691–705 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, F., Qi, B., Lo, H.-K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Branciard, C., Cavalcanti, E.G., Walborn, S.P., et al.: One-sided device-independent quantum key distribution: security, feasibility, and the connection with steering. Phys. Rev. A 85, 010301 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Xu, F., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89, 052333 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Ma, X., Razavi, M.: Alternative schemes for measurement-device-independent quantum key distribution. Phys. Rev. A 86, 062319 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Tamaki, K., Lo, H.-K., et al.: Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw. Phys. Rev. A 85, 042307 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Tang, Y.-L., Yin, H.-L., Chen, S.-J., et al.: Field test of Measurement-Device-Independent quantum key distribution. IEEE J. Sel. Top. Quantum Electron. 21, 116–122 (2015)CrossRefGoogle Scholar
  18. 18.
    Tang, Y.-L., Yin, H.-L., Zhao, Q., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016)Google Scholar
  19. 19.
    Yin, H.-L., Chen, T.-Y., Yu, Z.-W., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Yin, H.-L., Wang, W.-L., Tang, Y.-L., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A 95, 042338 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, C., Wang, S., Yin, Z.-Q., et al.: Experimental measurement-device-independent quantum key distribution with uncharacterized encoding. Opt. Lett. 41, 5596–5599 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Liu, Y., Chen, T.-Y., Wang, L.-J., et al.: Experimental measurement-device-independent quantum key distribution. Phys. Rev. Lett. 111, 130502 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Tang, G.-Z., Sun, S.-H., Xu, F., et al.: Experimental asymmetric Plug-and-Play Measurement-device-independent quantum key distribution. Phys. Rev. A 94, 032326 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Tang, Z., Liao, Z., Xu, F., et al.: Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution. Phys. Rev. Lett. 112, 190503 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    Tang, Y.-L., Yin, H.-L., Chen, S.-J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 113, 190501 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Laing, A., Scarani, V., Rarity, J.G., et al.: Reference frame independent quantum key distribution. Phys. Rev. A 82, 012304 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, Z., Zhang, C., Huang, Y.-F., et al.: Experimental demonstration of genuine multipartite quantum nonlocality without shared reference frames. Phys. Rev. A 93, 032127 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Palsson, M.S., Wallman, J.J., Bennet, A.J., et al.: Experimentally demonstrating reference-frame-independent violations of Bell inequalities. Phys. Rev. A 86, 032322 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Zhang, P., Aungskunsiri, K., Martín-López, E., et al.: Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. Phys. Rev. Lett. 112, 130501 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Wang, C., Song, X.-T., Yin, Z.-Q., et al.: Phase-Reference-Free Experiment of Measurement-Device-Independent quantum key distribution. Phys. Rev. Lett. 115, 160502 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Wang, C., Sun, S.-H., Ma, X.-C., et al.: Reference-frame-independent quantum key distribution with source flaws. Phys. Rev. A 92, 042319 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Pramanik, T., Park, B.K., Cho, Y.-W., Han, S.-W., Kim, Y.-S., Moon, S.: Robustness of reference-frame-independent quantum key distribution against the relative motion of the reference frames. Phys. Lett. A 381(31), 2497–2501 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sheridan, L., Le, T.P., Scarani, V.: Finite-key security against coherent attacks in quantum key distribution. New J. Phys. 12, 123019 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Fang, X., Wang, C., Han, Y.-G., et al.: Tomographic approach in reference-frame-independent measurement-device-independent quantum key distribution. Commun. Theor. Phys. 66, 496 (2016)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Liang, W.-Y., Wang, S., Li, H.-W., et al.: Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding. Sci. Rep. 4, 3617 (2014)CrossRefGoogle Scholar
  36. 36.
    Thinh, L.P., Sheridan, L., Scarani, V.: Tomographic quantum cryptography protocols are reference frame independent. Int. J. Quantum Inf. 10, 1250035 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Slater, J.A., Branciard, C., Brunner, N., et al.: Device-dependent and device-independent quantum key distribution without a shared reference frame. New J. Phys. 16, 043002 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    Yin, Z.-Q., Wang, S., Chen, W., et al.: Reference-free-independent quantum key distribution immune to detector side channel attacks. Quantum Inf. Process 13, 1237–1244 (2014)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, C., Yin, Z.-Q., Wang, S., et al.: Measurement-device-independent quantum key distribution robust against environmental disturbances. Optica 4, 1016–1023 (2017)CrossRefGoogle Scholar
  40. 40.
    Zhang, C.-M., Zhu, J.-R., Wang, Q.: Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution. Phys. Rev. A 95, 032309 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Zhang, C.-M., Zhu, J.-R., Wang, Q.: Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases. J. Lightwave Technol. 35, 4574–4578 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    Xu, F.: Measurement-device-independent quantum communication with an untrusted source. Phys. Rev. A 92, 012333 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Stucki, D., Gisin, N., Guinnard, O., et al.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 4, 41 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    Liu, C.-Q., Zhu, C.-H., Wang, L.-H., et al.: Polarization-encoding-based measurement-device-independent quantum key distribution with a single untrusted source. Chin. Phys. Lett. 33, 100301 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    Choi, Y., Kwon, O., Woo, M., et al.: Plug-and-play measurement-device-independent quantum key distribution. Phys. Rev. A 93, 032319 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Ribordy, G., Gautier, J.-D., Gisin, N., et al.: Fast and user-friendly quantum key distribution. J. Mod. Opt. 47, 517–531 (2000)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Biham, E., Huttner, B., Mor, T.: Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651 (1996)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Xu, F., Curty, M., Qi, B., et al.: Measurement-device-independent quantum cryptography. IEEE J. Sel. Top. Quantum Electron. 21, 148–158 (2015)Google Scholar
  50. 50.
    Inamori, H.: Security of practical time-reversed EPR quantum key distribution. Algorithmica 34, 340–365 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Yu, Z.-W., Zhou, Y.-H., Wang, X.-B.: Improved statistical fluctuation analysis for measurement-device-independent quantum key distribution with three-intensity decoy-state method. arXiv:1410.3265 (2014)

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina
  2. 2.Science and Technology on Communication Networks LaboratoryShijiazhuangChina
  3. 3.Guangxi Key Laboratory for Relativistic Astrophysics, School of Physics Science and TechnologyGuangxi UniversityNanningChina

Personalised recommendations