International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2103–2115 | Cite as

Atomic Evolution and Entanglement of Two Qubits in Photon Superfluid

  • Miao Yin
  • Xiongfeng Zhang
  • Yunlong Deng
  • Huaqiu Deng


By using reservoir theory, we investigate the evolution of an atom placed in photon superfluid and study the entanglement properties of two qubits interacting with photon superfluid. It is found that the atomic decay rate in photon superfluid changes periodically with position of the atom and the decay rate can be inhibited compared to that in usual electromagnetic environment without photon superfluid. It is also found that when two atoms are separately immersed in their own local photon-superfluid reservoir, the entanglement sudden death or birth occurs or not only depends on the initial state of the qubits. What is more, we find a possible case that the concurrence between two qubits can remain a constant value by choosing proper values of parameters of the system, which may provide a new way to preserve quantum entanglement.


Atomic evolution Entanglement Photon superfluid 



This work is supported by the National Natural Science Foundation of China (No. 11204088), Science and Technology Program of Guangzhou, China (No. 201607010019), Science and Technology Planning Project of Guangdong Province, China (No. 2015B010127004), and SRP of South China University of Technology.


  1. 1.
    Cleve, R., Buhrman, H.: Phys. Rev. A 56, 1201 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    Zyczkowski, K., Horodecki, P., Horodecki, M., Horodecki, R.: Phys. Rev. A 65, 012101 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Phys. Rev. Lett. 90, 227902 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Yu, T., Eberly, J.H.: Science 316, 555 (2007)CrossRefGoogle Scholar
  7. 7.
    Yu, T., Eberly, J.H.: Science 3238, 59 (2009)Google Scholar
  8. 8.
    Almeida, M., Melo, F.D., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P., Davidovich, L.: Science 316, 579 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Phys. Rev. A 73, 040305 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Wu, S.P., Zhang, L.J., Li, G.X.: Chin. Phys. B 17, 185 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Chiao, R.Y., Boyce, J.: Phys. Rev. A 60, 4114 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Klaers, J., Schmitt, J., Vewinger, F., Weitz, M.: Nature 468, 545 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Klaers, J., Schmitt, J., Damm, T., Vewinger, F., Weitz, M.: Phys. Rev. Lett. 108, 160403 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Klaers, J., Schmitt, J., Damm, T., Vewinger, F., Weitz, M.: Appl. Phys. B 105, 17 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Bogoliubov, N.: J. Phys. (U.S.S.R) 11, 23 (1947)Google Scholar
  16. 16.
    Nakajima, T., Lambropoulos, P., Walther, H.: Phys. Rev. A 56, 5100 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Hill, S., Wootters, W.K.: Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Al-Qasimi, A., James, D.F.V.: Phys. Rev. A 77, 012117 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Xu, Q.F., Hui, X., Chen, J., Cheng, Z.: Eur. Phys. J. D 66, 86 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Miao Yin
    • 1
  • Xiongfeng Zhang
    • 1
  • Yunlong Deng
    • 1
  • Huaqiu Deng
    • 1
  1. 1.School of Physics and OptoelectronicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations