International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 2022–2033 | Cite as

An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata

  • Saeid Seyedi
  • Nima Jafari Navimipour


Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal–Oxide–Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.


Quantum-dot cellular automata (QCA) Decoder Low power Cell number Nanoelectronics 


  1. 1.
    Yang, J.-H., Li, G.-f., Liu, H.-l.: Edge direct tunneling current in nano-scale MOSFET with high-K dielectrics. Microelectron. Int. 25, 30–33 (2007)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Tian, F., Peng, X., Yin, X., Li, G., Dang, L.: Concentration estimation of formaldehyde using metal oxide semiconductor gas sensor array-based e-noses. Sens. Rev. 34, 284–290 (2014)CrossRefGoogle Scholar
  3. 3.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49 (1993)ADSCrossRefGoogle Scholar
  4. 4.
    Naji Asfestani, M., Rasouli Heikalabad, S.: A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures. Phys. B Condens. Matter 512, 91–99 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Orlov, A., Amlani, I., Bernstein, G., Lent, C., Snider, G.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)CrossRefGoogle Scholar
  6. 6.
    Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Huang Chuah, J., Holburn, D.: Design of low-noise CMOS transimpedance amplifier. Microelectron. Int. 30, 115–124 (2013)CrossRefGoogle Scholar
  8. 8.
    Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata, International Journal of Theoretical Physics (2018)Google Scholar
  9. 9.
    Afrooz, S., Navimipour, N.J.: Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends, Journal of Circuits, Systems and Computers, p. 1730004Google Scholar
  10. 10.
    Abedi, D., Jaberipur, G., Sangsefidi, M.: Coplanar full adder in quantum-dot cellular automata via clock-zone-based crossover. IEEE Trans. Nanotechnol. 14, 497–504 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Kianpour, M., Sabbaghi-Nadooshan, R.: A novel modular decoder implementation in quantum-dot cellular automata (QCA). In: 2011 International Conference on Nanoscience, Technology and Societal Implications (NSTSI), 2011, pp. 1–5Google Scholar
  12. 12.
    Kianpour, M., Sabbaghi-Nadooshan, R., Navi, K.: A novel design of 8-bit adder/subtractor by quantum-dot cellular automata. J. Comput. Syst. Sci. 80, 1404–1414 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mohammadyan, S., Angizi, S., Navi, K.: New fully single layer QCA full-adder cell based on feedback model. Int. J. High Perform. Syst. Archit. 5, 202–208 (2015)CrossRefGoogle Scholar
  14. 14.
    Mondal, S., Mukhopadhyay, D., Dutta, P.: A Design of a 4 Dot 2 Electron QCA Full Adder Using Two Reversible Half Adders. In: Proceedings of the First International Conference on Intelligent Computing and Communication, 2017, pp. 327–335Google Scholar
  15. 15.
    Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Microelectron. J. 41, 820–826 (2010)CrossRefGoogle Scholar
  16. 16.
    Sayedsalehi, S., Moaiyeri, M.H., Navi, K.: Novel efficient adder circuits for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 8, 1769–1775 (2011)CrossRefGoogle Scholar
  17. 17.
    Seyedi, S., Navimipour, J.N.: An optimized design of full adder based on Nanoscale quantum-dot cellular automata, Optik - International Journal for Light and Electron Optics (2018)Google Scholar
  18. 18.
    Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata Microsystem Technologies, pp. 1-11Google Scholar
  19. 19.
    Lombardi, F., Huang, J.: Design and test of digital circuits by quantum-dot cellular automata: Artech House, Inc. (2007)Google Scholar
  20. 20.
    Mardiris, V., Mizas, C., Fragidis, L., Chatzis, V.: Design and simulation of a QCA 2 to 1 multiplexer. In: 12th WSEAS International conference on computers, Heraklion, Greece, 2008, pp. 572–576Google Scholar
  21. 21.
    Mardiris, V.A., Karafyllidis, I.G.: Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers. Int. J. Circuit Theory Appl. 38, 771–785 (2010)zbMATHGoogle Scholar
  22. 22.
    Hashemi, S., Azghadi, M.R., Zakerolhosseini, A.: A novel QCA multiplexer design. In: 2008 International Symposium on Telecommunications, 2008. IST, 2008, pp. 692–696Google Scholar
  23. 23.
    Sabbaghi-Nadooshan, R., Kianpour, M.: A novel QCA implementation of MUX-based universal shift register. J. Comput. Electron. 13, 198–210 (2014)CrossRefzbMATHGoogle Scholar
  24. 24.
    Huang, J., Momenzadeh, M., Lombardi, F.: On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire. J. Electron. Test. 23, 163–174 (2007)CrossRefGoogle Scholar
  25. 25.
    Ma, X., Huang, J., Metra, C., Lombardi, F.: Detecting multiple faults in one-dimensional arrays of reversible QCA gates. J. Electron. Test. 25, 39–54 (2009)CrossRefGoogle Scholar
  26. 26.
    Kianpour, M., Sabbaghi-Nadooshan, R.: A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata. Microprocess. Microsyst. 38, 1046–1062 (2014)CrossRefzbMATHGoogle Scholar
  27. 27.
    Sabbaghi-Nadooshan, R.: A novel quantum-dot cellular automata CLB of FPGA. J. Comput. Electron. 13, 709–725 (2014)CrossRefGoogle Scholar
  28. 28.
    Seitz, C.L.: System timing, Introduction to VLSI systems, pp. 218–262 (1980)Google Scholar
  29. 29.
    Makanda, K., Jeon, J.-C.: Design of Fast Quantum-dot Cellular Automata Decoder (2015)Google Scholar
  30. 30.
    Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    Sayedsalehi, S., Azghadi, M.R., Angizi, S., Navi, K.: Restoring and non-restoring array divider designs in quantum-dot cellular automata. Inf. Sci. 311, 86–101 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ottavi, M., Pontarelli, S., DeBenedictis, E.P., Salsano, A., Frost-Murphy, S., Kogge, P.M., et al.: Partially reversible pipelined QCA circuits: combining low power with high throughput. IEEE Trans. Nanotechnol. 10, 1383–1393 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Navi, K., Roohi, A., Sayedsalehi, S.: Designing reconfigurable quantum-dot cellular automata logic circuits. J. Comput. Theor. Nanosci. 10, 1137–1146 (2013)CrossRefGoogle Scholar
  34. 34.
    Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)CrossRefGoogle Scholar
  35. 35.
    Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Abdullah-Al-Shafi, M., Bahar, A.N.: A New Approach of Presenting Binary to Grey and Grey to Binary Code Converter in Majority Voter-Based QCA Nanocomputing. J. Comput. Theor. Nanosci. 14, 2416–2421 (2017)CrossRefGoogle Scholar
  37. 37.
    Farazkish, R., Khodaparast, F.: Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata. Microprocess. Microsyst. 39, 426–433 (2015)CrossRefGoogle Scholar
  38. 38.
    Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate, a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010)CrossRefGoogle Scholar
  39. 39.
    Angizi, S., Sarmadi, S., Sayedsalehi, S., Navi, K.: Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata. Microelectron. J. 46, 43–51 (2015)CrossRefGoogle Scholar
  40. 40.
    Hashemi, S., Tehrani, M., Navi, K.: An efficient quantum-dot cellular automata full-adder. Sci. Res. Essays 7, 177–189 (2012)Google Scholar
  41. 41.
    Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)CrossRefGoogle Scholar
  42. 42.
    Sherizadeh, R., Navimipour, J.N.: Designing a 2-to-4 decoder on nano-scale based on quantum-dot cellular automata for energy dissipation improving, Optik - International Journal for Light and Electron Optics (2018)Google Scholar
  43. 43.
    Lantz, T., Peskin, E.: A QCA implementation of a configurable logic block for an FPGA. In: 2006 IEEE International Conference on Reconfigurable Computing and FPGA’s, 2006. ReConFig, 2006, pp. 1–10Google Scholar
  44. 44.
    Balijepalli, H., Niamat, M.: Design of a nanoscale quantum-dot cellular automata configurable logic block for FPGAs. In: 2012 IEEE 55th International Midwest Symposium on Circuits and Systems (MWSCAS), 2012, pp. 622–625Google Scholar
  45. 45.
    Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Berggren, K.-F., Yakymenko, I.: Quantum cellular automata-Theory, experimentation and prospects (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Young Researchers and Elite Club, Tabriz BranchIslamic Azad UniversityTabrizIran
  2. 2.Department of Computer Engineering, Tabriz BranchIslamic Azad UniversityTabrizIran

Personalised recommendations