International Journal of Theoretical Physics

, Volume 57, Issue 7, pp 1974–1982 | Cite as

Non-Abelian Gauge Theory in the Lorentz Violating Background

  • Prince A. Ganai
  • Mushtaq B. Shah
  • Masood Syed
  • Owais Ahmad


In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.


BRST symmetry FFBRST symmetry anti-BRST symmetries Gaugeon formalism 


  1. 1.
    ’t Hooft, G.: Quantization of point particles in (2 + 1)-dimensional gravity and space-time discreteness, Class. Quant. Grav. 13, 1023 (1996)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Amelino-Camelia, G., Ellis, J.R., Mavromatos, N.E., Nanopoulos, D.V., Sarkar, S.: Tests of quantum gravity from observations of gamma-ray bursts. Nature 393, 763 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Gambini, R., Pullin, J.: Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Carroll, S.M., Harvey, J.A., Kostelecky, V.A., Lane, C. D., Okamoto, T.: Noncommutative field theory and Lorentz violation. Phys. Rev. Lett. 87, 141601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Horava, P.: Quantum gravity at a lifshitz point. Phys. Rev. D 79, 084008 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Chakravarty, S., Dasgupta, K., Ganor, O.J., Rajesh, G.: Pinned branes and new nonLorentz invariant theories. Nucl. Phys. B 587, 228 (2000)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Kostelecky, V.A., Samuel, S.: Gravitational phenomenology in higher dimensional theories and strings. Phys. Rev. D 40, 1886 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    Cohen, A.G., Glashow, S.L.: Very special relativity. Phys. Rev. Lett. 97, 021601 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Sheikh-Jabbari, M.M., Tureanu, A.: Realization of Cohen-Glashow very special relativity on noncommutative space-time. Phys. Rev. Lett. 101, 261601 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Cohen, A.G., Freedman, D.Z.: SIM(2) and SUSY. JHEP 0707, 039 (2007)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Petras, S., von Unge, R., Vohanka, J.: SIM(2) and supergraphs. JHEP 1107, 015 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vohanka, J.: Gauge theory and SIM(2) superspace. Phys. Rev. D 85, 105009 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Vohánka, J., Faizal, M.: Chern–simons theory in SIM(1) superspace. Eur. Phys. J. C 75(12), 592 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Vohánka, J., Faizal, M.: Supersymmetric Chern–Simons theory in presence of a boundary in the light-like direction. Nucl. Phys. B 904, 327 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Vohánka, J., Faizal, M.: Super-Yang-Mills theory in SIM(1) superspace. Phys. Rev. D 91(4), 045015 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kouretsis, A.P., Stathakopoulos, M., Stavrinos, P.C.: The general very special relativity in finsler cosmology. Phys. Rev. D 79, 104011 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Muck, W.: Very special relativity in curved Space-Times. Phys. Lett. B 670, 95 (2008)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Shah, M.B., Ganai, P.A.: A study of gaugeon formalism for QED in lorentz violating background. Commun. Theor. Phys. 69(2), 166 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    Masood, S., Shah, M.B., Ganai, P.A.: Spontaneous symmetry breaking in Lorentz violating background. Int. J. Geom. Meth. Mod. Phys. 15(02), 1850021 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Shah, M.B., Ganai, P.A.: Quantum gauge freedom in the Lorentz violating background. Int. J. Geom. Meth. Mod. Phys. 15(01), 1850009 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Bufalo, R., Upadhyay, S.: Axion mass bound in very special relativity. Phys. Lett. B 772, 420 (2017)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Upadhyay, S.: Reducible gauge theories in very special relativity. Eur. Phys. J. C 75(12), 593 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Ahluwalia, D.V., Horvath, S.P.: Very special relativity as relativity of dark matter: The Elko connection. JHEP 1011, 078 (2010)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Chang, Z., Li, M.H., Li, X., Wang, S.: Cosmological model with local symmetry of very special relativity and constraints on it from supernovae. Eur. Phys. J. C 73(6), 2459 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    Alfaro, J., Rivelles, V.O.: Non Abelian fields in very special relativity. Phys. Rev. D 88, 085023 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Alfaro, J., González, P., Ávila, R.: Electroweak standard model with very special relativity. Phys. Rev. D 91, 105007 (2015)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Alfaro, J., González, P., Ávila, R.: Addendum: Phys. Rev. D 91(12), 129904 (2015)ADSGoogle Scholar
  28. 28.
    Becchi, C., Rouet, A., Stora, R.: Renormalization of gauge theories. Annals Phys. 98, 287 (1976)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Tyutin, I.V.: Gauge invariance in field theory and statistical physics in operator formalismGoogle Scholar
  30. 30.
    Costa, G., Julve, J., Marinucci, T., Tonin, M.: Nonabelian gauge theories and triangle anomalies. Nuovo Cim. A 38, 373 (1977)ADSCrossRefGoogle Scholar
  31. 31.
    Kugo, T., Ojima, I.: Manifestly covariant canonical formulation of Yang-Mills field theories: Physical state subsidiary conditions and physical s matrix unitarity. Phys. Lett. 73B, 459 (1978)ADSCrossRefGoogle Scholar
  32. 32.
    Hata, H., Kugo, T.: Subsidiary conditions and physical s matrix unitarity in covariant canonical formulation of supergravity. Nucl. Phys. B 158, 357 (1979)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Faizal, M., Khan, M.: A superspace formulation of the BV action for higher derivative theories. Eur. Phys. J. C 71, 1603 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Baulieu, L., Thierry-Mieg, J.: The principle of BRS symmetry: an alternative approach to Yang-Mills theories. Nucl. Phys. B 197, 477 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    Azevedo, T., Jusinskas, R.L.: Background constraints in the infinite tension limit of the heterotic string. JHEP 1608, 133 (2016)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Mafra, C.R., Schlotterer, O.: One-loop superstring six-point amplitudes and anomalies in pure spinor superspace. JHEP 1604, 148 (2016)ADSGoogle Scholar
  37. 37.
    Jusinskas, R.L.: On the field-antifield (a)symmetry of the pure spinor superstring. JHEP 1512, 136 (2015)ADSMathSciNetGoogle Scholar
  38. 38.
    Jusinskas, R.L.: Notes on the ambitwistor pure spinor string. JHEP 1605, 116 (2016)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Oda, I.: Covariant matrix model of superparticle in the pure spinor formalism. Mod. Phys. Lett. A 18, 1023 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Faizal, M.: Aspects of ABJ theory. JHEP 1301, 156 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Faizal, M.: Chern-Simons-Matter theory. Int. J. Mod. Phys. A 28, 1350012 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Faizal, M., Upadhyay, S., Mandal, B.P.: IR Finite graviton propagators in de Sitter spacetime. Eur. Phys. J. C 76(4), 189 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    Chang, L.N., Soo, C.p.: BRST cohomology and invariants of 4-D gravity in Ashtekar variables. Phys. Rev. D 46, 4257 (1992)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Kachru, S.: Extra states symmetries in D < 2 closed string theory. Nucl. Phys. B 390, 173 (1993)ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Terao, H.: Quantum analysis of Jackiw and Teitelboim’s model for (1 + 1)-D gravity and topological gauge theory. Nucl. Phys. B 395, 623 (1993)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Lee, H.Y., Nakamichi, A., Ueno, T.: Topological two form gravity in four-dimensions. Phys. Rev. D 47, 1563 (1993)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Ohta, N., Suzuki, H.: Interactions of discrete states with nonzero ghost number in c = 1 2-D gravity. Mod. Phys. Lett. A 7, 2723 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Anselmi, D., Fre, P.: Twisted N = 2 supergravity as topological gravity in four-dimensions. Nucl. Phys. B 392, 401 (1993)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Faizal, M.: Noncommutativity and non-anticommutativity in perturbative quantum gravity. Mod. Phys. Lett. A 27, 1250075 (2012)ADSCrossRefzbMATHGoogle Scholar
  50. 50.
    Faizal, M.: Noncommutative quantum gravity. Mod. Phys. Lett. A 28, 1350034 (2013)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Faizal, M.: Noether‘s charge in the super-group field cosmology. Grav. Cosmol. 20(2), 132 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Faizal, M.: Absence of black holes information paradox in group field cosmology. Int. J. Geom. Meth. Mod. Phys. 11, 1450010 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Faizal, M.: Super-group field cosmology. Class. Quant. Grav. 29, 215009 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Troost, J.: Massless particles on supergroups and A d S 3 x S 3 supergravity. JHEP 1107, 042 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Faizal, M.: The BV formalization of Chern-Simons theory on deformed superspace. Commun. Theor. Phys. 58, 704 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Banerjee, R., Deguchi, S.: A superspace formulation of Yang-Mills theory on sphere. J. Math. Phys. 51, 052301 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Ulker, K.: N = 2 SYM action as a BRST exact term, topological Yang-Mills and instantons. Phys. Rev. D 68, 085005 (2003)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Shah, M.B., Faizal, M., Ganai, P.A., Zaz, Z., Bhat, A., Masood, S.: Boundary effects in Super-Yang–Mills theory. Eur. Phys. J. C 77(5), 309 (2017)ADSCrossRefGoogle Scholar
  59. 59.
    Lehum, A.C., Nascimento, J.R., Petrov A.Y., da Silva, A. J.: Supergauge theories in aether superspace. Phys. Rev. D 88, 045022 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Weinreb, P., Faizal, M.: Generalized Faddeev–Popov method for a deformed supersymmetric Yang–Mills theory. Phys. Lett. B 748, 102 (2015)ADSCrossRefzbMATHGoogle Scholar
  61. 61.
    Upadhyay, S., Panigrahi, P.K.: Quantum gauge freedom in very special relativity. Nucl. Phys. B 915, 168 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Upadhyay, S., Shah, M.B., Ganai, P.A.: Lorentz violating p-form gauge theories in superspace. Eur. Phys. J. C 77(3), 157 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    Capri, M.A.L., Sobreiro, R.F., Sorella, S. P.: Interpolating among the Landau, Coulomb and maximal Abelian gauges. Phys. Rev. D 73, 041701 (2006)ADSCrossRefzbMATHGoogle Scholar
  64. 64.
    Dudal, D., Gracey, J.A., Lemes, V.E.R., Sarandy, M.S., Sobreiro, R.F., Sorella, S.P., Verschelde, H.: An analytic study of the off-diagonal mass generation for Yang-Mills theories in the maximal Abelian gauge. Phys. Rev. D 70, 114038 (2004)ADSCrossRefzbMATHGoogle Scholar
  65. 65.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Maldacena, J.M.: Adv. Theor. Math. Phys. 2, 231 (1998)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Gustavsson, A.: Selfdual strings and loop space Nahm equations. JHEP 0804, 083 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Bagger, J., Lambert, N.: Comments on multiple M2-branes. JHEP 0802, 105 (2008)ADSMathSciNetCrossRefGoogle Scholar
  69. 69.
    Bagger, J., Lambert, N.: Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008)ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Faizal, M.: Deformation of the ABJM theory. Europhys. Lett. 98, 31003 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    Aharony, O., Bergman, O., Jafferis, D.L., Maldacena, J.: N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. JHEP 0810, 091 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Aharony, O., Bergman, O., Jafferis, D.L.: Fractional M2-branes. JHEP 0811, 043 (2008)ADSMathSciNetCrossRefGoogle Scholar
  73. 73.
    Faizal, M.: Non-anticommutative ABJ theory. Nucl. Phys. B 869, 598 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    Queiruga, J.M., Lehum, A.C., Faizal, M.: Kählerian effective potentials for Chern–Simons-matter theories. Nucl. Phys. B 902, 58 (2016)ADSCrossRefzbMATHGoogle Scholar
  75. 75.
    Antonyan, E., Tseytlin, A.A.: On 3d N = 8 Lorentzian BLG theory as a scaling limit of 3d superconformal N = 6 ABJM theory. Phys. Rev. D 79, 046002 (2009)ADSMathSciNetCrossRefGoogle Scholar
  76. 76.
    Berman, D.S., Perry, M.J., Sezgin, E., Thompson, D.C.: Boundary conditions for interacting membranes. JHEP 1004, 025 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Aprile, F., Niarchos, V.: \(\mathcal {N} = 2\) supersymmetric field theories on 3-manifolds with A-type boundaries. JHEP 1607, 126 (2016)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    Faizal, M.: Gauge and supersymmetric invariance of a boundary Bagger-Lambert-Gustavsson theory. JHEP 1204, 017 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    Belyaev, D.V., van Nieuwenhuizen, P.: Simple d = 4 supergravity with a boundary. JHEP 0809, 069 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    Faizal, M., Luo, Y., Smith, D.J., Tan, M.C., Zhao, Q.: Gauge and supersymmetry invariance of N = 2 boundary Chern–Simons theory. Nucl. Phys. B 914, 577 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Faizal, M.: Boundary effects in the BLG theory. Mod. Phys. Lett. A 29(31), 1450154 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Berman, D.S., Thompson, D.C.: Membranes with a boundary. Nucl. Phys. B 820, 503 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Faizal, M., Smith, D.J.: Nonanticommutativity in the presence of a boundary. Phys. Rev. D 87(2), 025019 (2013)ADSCrossRefGoogle Scholar
  84. 84.
    Bilal, A.: Supersymmetric boundaries and junctions in four dimensions. JHEP 1111, 046 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  85. 85.
    Belyaev, D.V., Pugh, T.G.: The Supermultiplet of boundary conditions in supergravity. JHEP 1010, 031 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Faizal, M., Awad, A.: Four dimensional supersymmetric theories in presence of a boundary. Phys. Lett. B 748, 414 (2015)ADSCrossRefzbMATHGoogle Scholar
  87. 87.
    Belyaev, D.V., van Nieuwenhuizen, P.: Rigid supersymmetry with boundaries. JHEP 0804, 008 (2008)ADSCrossRefGoogle Scholar
  88. 88.
    Gribov, V.N.: Quantization of nonabelian gauge theories. Nucl. Phys. B 139, 1 (1978)ADSMathSciNetCrossRefGoogle Scholar
  89. 89.
    Singer, I.M.: Some remarks on the gribov ambiguity. Commun. Math. Phys. 60, 7 (1978)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Shigemoto, K.: Field strength method and Gribov ambiguity in two-dimensional Nonabelian gauge theory. Lett. Nuovo Cim. 24, 495 (1979)CrossRefGoogle Scholar
  91. 91.
    Killingback, T.P.: The gribov ambiguity in gauge theories on the 4 torus. Phys. Lett. 138B, 87 (1984)ADSMathSciNetCrossRefGoogle Scholar
  92. 92.
    Zwanziger, D.: Nonperturbative modification of the Faddeev-popov formula and banishment of the naive vacuum. Nucl. Phys. B 209, 336 (1982)ADSMathSciNetCrossRefGoogle Scholar
  93. 93.
    Zwanziger, D.: Local and renormalizable action from the gribov horizon. Nucl. Phys. B 323, 513 (1989)ADSMathSciNetCrossRefGoogle Scholar
  94. 94.
    Capri, M. A. L., Dudal, D., Pereira, A. D., Fiorentini, D., Guimaraes, M.S., Mintz, B.W., Palhares, L.F., Sorella, S.P.: Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges: Nielsen identities and a BRST-invariant two-point correlation function. Phys. Rev. D 95(4), 045011 (2017)ADSCrossRefGoogle Scholar
  95. 95.
    Zwanziger, D.: Action from the gribov horizon. Nucl. Phys. B 321, 591 (1989)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Guimaraes, M.S., Pereira, A.D., Sorella, S.P.: Remarks on the effects of the Gribov copies on the infrared behavior of higher dimensional Yang-Mills theory. Phys. Rev. D 94(11), 116011 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Prince A. Ganai
    • 1
  • Mushtaq B. Shah
    • 1
  • Masood Syed
    • 2
  • Owais Ahmad
    • 3
  1. 1.Department of PhysicsNational Institute of TechnologySrinagarIndia
  2. 2.Department of PhysicsInternational Islamic UniversityIslamabadPakistan
  3. 3.Department of MathematicsNational Institute of TechnologySrinagarIndia

Personalised recommendations