Application of Blind Quantum Computation to Two-Party Quantum Computation



Blind quantum computation (BQC) allows a client who has only limited quantum power to achieve quantum computation with the help of a remote quantum server and still keep the client’s input, output, and algorithm private. Recently, Kashefi and Wallden extended BQC to achieve two-party quantum computation which allows two parties Alice and Bob to perform a joint unitary transform upon their inputs. However, in their protocol Alice has to prepare rotated single qubits and perform Pauli operations, and Bob needs to have a powerful quantum computer. In this work, we also utilize the idea of BQC to put forward an improved two-party quantum computation protocol in which the operations of both Alice and Bob are simplified since Alice only needs to apply Pauli operations and Bob is just required to prepare and encrypt his input qubits.


Blind quantum computation Two-party quantum computation 



We would like to thank Zhulin Li, Chengdong Liu, and Yu Peng for useful discussion and suggestion. This work was supported by the Joint Funds of the National Natural Science Foundation of China and China General Technology Research Institute (Grant No. U1736113), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2403).


  1. 1.
    Nielsen, M.A., Chuang, I.L: Quantum Computation and Quantum Information. Cambridge University Press (2010)Google Scholar
  2. 2.
    Shor, P.W.: In: Proceedings of the 35th Annual IEEE Symposium on the Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  3. 3.
    Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  4. 4.
    Morimae, T., Fujii, K.: Phys. Rev. A 87, 050301(R) (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Fitzsimons, J.F.: npj Quant. Inf. 3, 23 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    Childs, A.M.: Quant. Inf. Comput. 5, 456 (2005)Google Scholar
  7. 7.
    Arrighi, P., Salvail, L.: Int. J. Quant. Inf. 04, 883 (2006)CrossRefGoogle Scholar
  8. 8.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526 (2009)Google Scholar
  9. 9.
    Raussendorf, R., Briegel, H.J.: Phys. Rev. Lett. 86, 5188 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    Morimae, T., Fujii, K.: Phys. Rev. Lett. 111, 020502 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Li, Q., Chan, W.H., Wu, C., Wen, Z.: Phys. Rev. A 89, 040302(R) (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Sheng, Y.B., Zhou, L.: Sci. Rep. 5, 7815 (2015)CrossRefGoogle Scholar
  13. 13.
    Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Phys. Rev. A 93, 052307 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    Sheng, Y.B., Zhou, L.: Available at arXiv:1609.08902 (2016)
  15. 15.
    Kashefi, E., Wallden, P.: Available at arXiv:1510.07408 (2015)
  16. 16.
    Fitzsimons, J.F., Kashefi, E.: Phys. Rev. A 96, 012303 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Dunjko, V., Kashefi, E., Leverrier, A.: Phys. Rev. Lett. 108, 200502 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Morimae, T., Fujii, K.: Nat. Commun. 3, 251 (2012)CrossRefGoogle Scholar
  19. 19.
    Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Phys. Lett. A 382, 938 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Brennen, G.K., Miyake, A.: Phys. Rev. Lett. 101, 010502 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Morimae, T.: Phys. Rev. Lett. 109, 230502 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Sueki, T., Koshiba, T., Morimae, T.: Phys. Rev. A 87, 060301 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Phys. Rev. Lett. 111, 230502 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Kong, X., Li, Q., Wu, C., Yu, F., He, J., Sun, Z.: Int. J. Theor. Phys. 55, 3001 (2016)CrossRefGoogle Scholar
  25. 25.
    Kashefi, E., Wallden, P.: Cryptography 1, 6 (2017)CrossRefGoogle Scholar
  26. 26.
    Kashefi, E., Pappa, A.: Available at arXiv:1606.09200 (2016)
  27. 27.
    Sheng, Y.B., Zhou, L.: Sci. Bull. 62, 1025 (2017)CrossRefGoogle Scholar
  28. 28.
    Yao, A.C.: In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar
  29. 29.
    Dupuis, F., Nielsen, J.B., Salvail, L.: In: Advances in Cryptology-Crypto 2010, pp. 685–706 (2010)Google Scholar
  30. 30.
    Naor, M., Pinkas, B.: In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing, pp. 245–254 (1999)Google Scholar
  31. 31.
    Osorio, C.I., Bruno, N., Sangouard, N., Zbinden, H., Gisin, N., Thew, R.T.: Phys. Rev. A 86, 023815 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Zhou, L., Sheng, Y.B.: Laser Phys. Lett. 12, 045203 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    Zwerger, M., Briegel, H.J., Dur, W.: Phys. Rev. A 90, 012314 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Zhou, L., Sheng, Y.B.: Sci. Rep. 6, 28813 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    Du, F.F., Deng, F.G.: Science china physics. Mech. Astron. 58, 040303 (2015)Google Scholar
  36. 36.
    Sheng, Y.B., Pan, J., Guo, R., Zhou, L., Wang, L.: Science china physics. Mech. Astron. 58, 060301 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Information EngineeringXiangtan UniversityXiangtanChina
  2. 2.Department of Computer ScienceJinan UniversityGuangzhouChina
  3. 3.Department of Mathematics and Information TechnologyThe Education University of Hong KongTai PoHong Kong

Personalised recommendations