Entanglement Dynamics of Linear and Nonlinear Interaction of Two Two-Level Atoms with a Quantized Phase-Damped Field in the Dispersive Regime

Article
  • 13 Downloads

Abstract

In this paper we study the linear and nonlinear (intensity-dependent) interactions of two two-level atoms with a single-mode quantized field far from resonance, while the phase-damping effect is also taken into account. To find the analytical solution of the atom-field state vector corresponding to the considered model, after deducing the effective Hamiltonian we evaluate the time-dependent elements of the density operator using the master equation approach and superoperator method. Consequently, we are able to study the influences of the special nonlinearity function \(f (n) = \sqrt {n}\), the intensity of the initial coherent state field and the phase-damping parameter on the degree of entanglement of the whole system as well as the field and atom. It is shown that in the presence of damping, by passing time, the amount of entanglement of each subsystem with the rest of system, asymptotically reaches to its stationary and maximum value. Also, the nonlinear interaction does not have any effect on the entanglement of one of the atoms with the rest of system, but it changes the amplitude and time period of entanglement oscillations of the field and the other atom. Moreover, this may cause that, the degree of entanglement which may be low (high) at some moments of time becomes high (low) by entering the intensity-dependent function in the atom-field coupling.

Keywords

Dissipative atom-field interaction Intensity-dependent interaction Superoperator method Degree of entanglement 

Notes

Acknowledgements

The authors would like to thank Dr. N. Yazdanpanah for useful discussions.

References

  1. 1.
    Barnett, S.: Quantum Information. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  2. 2.
    Piani, M., Watrous, J.: Phys. Rev. Lett. 114(6), 060404 (2015)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Commun. Theor. Phys. 65 (3), 266 (2016)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Int. J. Theor. Phys. 54 (8), 2839 (2015)CrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Sehati, N., Tavassoly, M.K.: Quant. Inf. Proc. 16(8), 193 (2017)CrossRefGoogle Scholar
  7. 7.
    Daneshmand, R., Tavassoly, M.K.: Eur. Phys. J. D 70(5), 101 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Opt. Commun. 382, 381 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Pakniat, R., Tavassoly, M.K., Zandi, M.H.: Chin. Phys. B 25(10), 100303 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    Ghasemi, M., Tavassoly, M.K., Nourmandipour, A.: The European Physical Journal Plus 132(12), 531 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    Ye, L., Guo, G.C.: Phys. Rev. A 71(3), 034304 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Li, S.S.: Int. J. Theor. Phys. 51(3), 724 (2012)CrossRefGoogle Scholar
  13. 13.
    Ekert, A.K.: Phys. Rev. Lett. 67(6), 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Jaynes, E.T., Cummings, F.W.: Proc. IEEE 51(1), 89 (1963)CrossRefGoogle Scholar
  15. 15.
    Shore, B.W., Knight, P.L.: J. Mod. Opt. 40(7), 1195 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    Solano, E., Agarwal, G.S., Walther, H.: Phys. Rev. Lett. 90(2), 027903 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Daneshmand, R.N., Tavassoly, M.K.: Laser Phys. 25(5), 055203 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Bužek, V., Jex, I., Brisudova, M.: Int. J. Mod. Phys. B 5(05), 797 (1991)ADSCrossRefGoogle Scholar
  19. 19.
    Faghihi, M.J., Tavassoly, M.K.: J. Phys. B: At. Mol. Opt. Phys. 45(3), 035502 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: J. Opt. Soc. Am. B 30(5), 1109 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Commun. Theor. Phys. 62 (3), 430 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Faghihi, M.J., Tavassoly, M.K., Harouni, M.B.: Laser Phys. 24(4), 045202 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Chin. Phys. B 23(7), 074203 (2014)CrossRefGoogle Scholar
  24. 24.
    Faraji, E., Tavassoly, M.K., Baghshahi, H.R.: Int. J. Theor. Phys. 55(5), 2573 (2016)CrossRefGoogle Scholar
  25. 25.
    Joshi, A., Lawande, S.V.: Phys. Rev. A 48(3), 2276 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    Miry, S.R., Tavassoly, M.K.: Phys. Scr. 85(3), 035404 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    de los Santos-Sánchez, O., González-Gutiérrez, C., Récamier, J.: J. Phys. B 49(16), 165503 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    de los Santos-Sánchez, O., Récamier, J.: J. Phys. B 45(1), 015502 (2011)CrossRefGoogle Scholar
  29. 29.
    Baghshahi, H.R., Tavassoly, M.K., Faghihi, M.J.: Laser Phys. 24(12), 125203 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Weiss, U.: Quantum Dissipative Systems. World Scientific, Singapore (1999)CrossRefMATHGoogle Scholar
  31. 31.
    Razavy, M.: Classical and Quantum Dissipative Systems. World Scientific, Singapore (2005)MATHGoogle Scholar
  32. 32.
    Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)CrossRefMATHGoogle Scholar
  33. 33.
    Puri, R., Agarwal, G.: Phys. Rev. A 35(8), 3433 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    Rustaee, N., Tavassoly, M.K., Daneshmand, R.: Int. J. Mod. Phys. B 30, 1750006 (2016)Google Scholar
  35. 35.
    Daneshmand, R., Tavassoly, M.K.: Laser Phys. 26(6), 065204 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Eur. Phys. J. Plus 131(4), 80 (2016)CrossRefGoogle Scholar
  37. 37.
    Guo, Y.Q., Zhou, L., Song, H.S.: Int. J. Theor. Phys. 44(9), 1373 (2005)CrossRefGoogle Scholar
  38. 38.
    Englert, B.G., Naraschewski, M., Schenzle, A.: Phys. Rev. A 50(3), 2667 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Gea-Banacloche, J.: Phys. Rev. A 47(3), 2221 (1993)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhang, L.H., Li, G.X., Peng, J.S.: Act. Phys. Sin. 51, 541 (2002)Google Scholar
  41. 41.
    Kuang, L.M., Chen, X., Chen, G.H., Ge, M.L.: Phys. Rev. A 56(4), 3139 (1997)ADSCrossRefGoogle Scholar
  42. 42.
    Rendell, R.W., Rajagopal, A.K.: Phys. Rev. A 67(6), 062110 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    Chuang, I.L., Yamamoto, Y.: Phys. Rev. A 55(1), 114 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    de Faria, J.G.P., Nemes, M.C.: Phys. Rev. A 59, 3918 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    Chun-Xian, L., Mao-Fa, F.: Chin. Phys. 12(8), 866 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Roknizadeh, R., Tavassoly, M.K.: J. Phys. A Math. Gen. 37(21), 5649 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    Tavassoly, M.K.: Opt. Commun. 283, 5081 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Honarasa, G.R., Tavassoly, M.K., Hatami, M.: Opt. Commun. 282(11), 2192 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Man’ko, V.I., Marmo, G., Sudarshan, E.C.G., Zaccaria, F.: Phys. Scr. 55, 528 (1997)ADSCrossRefGoogle Scholar
  50. 50.
    de Matos Filho, R., Vogel, W.: Phys. Rev. A 54, 4560 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    Plenio, M.B., Huelga, S.F.: Phys. Rev. Lett. 88, 197901 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    Daneshmand, R., Tavassoly, M.K.: Int. J. Theor. Phys. 56, 1218 (2017)CrossRefGoogle Scholar
  53. 53.
    Zhou, P., Hu, Z.L., Peng, J.S.: J. Mod. Opt. 39, 49 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    Moya-Cessa, H., Soto-Eguibar, F., Vargas-Martínez, J.M., Juárez-Amaro, R., Zúñiga-Segundo, A.: Phys. Rep. 513, 229 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Buck, B., Sukumar, C.V.: Phys. Lett. A 81, 132 (1981)ADSCrossRefGoogle Scholar
  56. 56.
    Schleich, W.P.: Quantum Optics in Phase Space. Wiley, New York (2011)MATHGoogle Scholar
  57. 57.
    Juárez-Amaro, R., Vargas-Martínez, J.M., Moya-Cessa, H.: Laser Phys. 18, 344 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Moya-Cessa, H.: Phys. Rep. 432(1), 1 (2006)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Walls, D.F., Milburn, G.J.: Phys. Rev. A 31, 2403 (1985)ADSCrossRefGoogle Scholar
  60. 60.
    Qing-Chun, Z., Shi-Ning, Z.: Chin. Phys. 14, 1147 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    Cirac, J., Zoller, P.: Phys. Rev. A 50(4), R2799 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    Li, J.: Int. J. Theor. Phys. 55(11), 4699 (2016)CrossRefGoogle Scholar
  63. 63.
    Xiao, J., Ren, Y.: . In: 2nd International Conference on Systems and Informatics (ICSAI), 2014, pp 665–669. IEEE (2014)Google Scholar
  64. 64.
    Dehghani, A., Mojaveri, B., Shirin, S., Faseghandis, S.A.: Scientific reports, 6 (2016)Google Scholar
  65. 65.
    Nourmandipour, A., Tavassoly, M.K., Bolorizadeh, M.: J. Opt. Soc. Am. B 33(8), 1723 (2016)ADSCrossRefGoogle Scholar
  66. 66.
    Bougouffa, S., Ficek, Z.: Phys. Rev. A 93(6), 063848 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    Tahira, R., Ikram, M., Bougouffa, S., Zubairy, M.S.: J. Phys. B At. Mol. Opt. Phys. 43(3), 035502 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Aloufi, K., Bougouffa, S., Ficek, Z.: Phys. Scr. 90(7), 074020 (2015)ADSCrossRefGoogle Scholar
  69. 69.
    Bougouffa, S., Ficek, Z.: Phys. Rev. A 88(2), 022317 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atomic and Molecular Group, Faculty of PhysicsYazd UniversityYazdIran
  2. 2.Department of PhysicsEstahban Higher Education CenterEstahbanIran

Personalised recommendations