Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1553–1558 | Cite as

Entanglement Properties of the Kerr-Down Conversion System

  • Shu Jian
Article
  • 26 Downloads

Abstract

We investigate the entanglement properties of the Kerr-down conversion system with two entanglement criteria. We first obtain the exact analytic solutions for operators under certain condition. Using the exact analytic solutions, we show that the azimuth angle is independence of linear interaction; while the polar angle is independence of nonlinear interaction. By characterizing the degree of entanglement with two criteria, we see that the entanglement properties of the Kerr-down conversion system can be controlled by adjusting the nonlinear interaction and the linear interaction.

Keywords

Entanglement Kerr-down conversion Nonlinear interaction Linear interaction 

References

  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Li, S.-S., Huang, Y.-B.: Int. J. Quant. Infrom. 6, 561 (2008)CrossRefGoogle Scholar
  3. 3.
    Jian, S.: Int. J Theor. Phys. 52, 2851 (2013)CrossRefGoogle Scholar
  4. 4.
    Kraus, B., Büchler, H.P., Diehl, S., Kantian, A., Micheli, A., Zoller, P.: Phys. Rev. A 78, 042307 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Unanyan, R.G., Vitanov, N.V., Bergmann, K.: Phys. Rev. Lett. 87, 137902 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Marr, C., Beige, A., Rempe, G.: Phys. Rev. A 68, 033817 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    Shi, B.-S., Tomita, A.: J. Opt. B: Quantum Semiclassical Opt. 4, 380 (2002)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ma, P.-C., Chen, G.-B., Li, X.-W., Zhan, Y.-B.: Laser Phys. 26, 105201 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    El-Orany, F.A.A., Sebawe Abdalla, M., Peřina, J.: Eur. Phys. J. D 41, 391 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Pezzé, L., Smerzi, A.: Phys. Rev. Lett. 102, 100401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Tóth, G., Knapp, C., Gühne, O., Briegel, H.J.: Phys. Rev. Lett. 99, 250405 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Senko, C., Smith, J., Richerme, P., Lee, A., Campbell, W.C., Monroe, H.C.: Science 345, 530 (2014)CrossRefGoogle Scholar
  13. 13.
    Braunstein, S.L., Caves, C.M.: Phys. Rev. Lett. 72, 3439 (1994)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Wootters, W.K.: Phys. Rev. D 23, 357 (1981)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jin, G.-R., Liu, Y.-C., Liu, W.-M.: New J. Phys. 11, 073049 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Li, S.-S.: Int. J Theor. Phys. 54, 3503 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic CommerceJiangxi University of Finance and EconomicsNanchangPeople’s Republic of China

Personalised recommendations