International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1471–1478 | Cite as

Geometric Quantum Discord of a Two-Qutrit System Under Decoherence at Finite Temperature

Article
  • 54 Downloads

Abstract

The dynamics and protection of geometric quantum discord (GQD) for a two-qutrit system under amplitude damping channel with finite temperature have been studied in detail. By using of a lower bound of GQD, numerical results show that the GQD dynamics suffering from amplitude damping channels is more robust against the decoherence at lower temperature. Moreover, by combining weak measurement with measurement reversal, we have also investigated the protecting of the GDQ for a two-qutrit system under decoherence. It is found that the measurement technique can effectively protect the GQD against decoherence at lower temperature, but fails to protect GQD at higher temperature of channel.

Keywords

Geometric quantum discord Finite temperature Weak measurement and measurement reversal 

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant Nos.11747107 and 11374096), the Scientific Research Project of Hunan Province Department of Education (Grant Nos.16C0134 and 17C0133), the Natural Science Foundation of Hunan Province (Grant No.2017JJ3346 and 14JJ2134), Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education (QSQC1403 and QSQC1411) and the Project of Science and Technology Plan of Changsha (ZD1601071 and K1705022).

References

  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Kaszlikowski, D., Gnaciski, P., Zukowski, M., Miklaszewski, W., Zeilinger, A.: Phys. Rev. Lett. 85, 44184421 (2000)CrossRefGoogle Scholar
  4. 4.
    Walborn, S.P., Lemelle, D.S., Almeida, M.P., Ribeiro, P.H.S.: Phys. Rev. Lett. 96, 090501 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Klyachko, A.A., Öztop, B, Shumovsky, A.S.: Laser Phys. 17, 226229 (2007)Google Scholar
  6. 6.
    Yang, Z.B., Wu, H.Z., Zhen, S.B.: Chin. Phys. B 19, 094205 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Ali, M.: Phys. Rev. A 81, 042303 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Phys. Rev. Lett. 88, 040404 (2002)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Wang, Q., He, Z.: Phys. Scr. 90, 055102 (2015)CrossRefGoogle Scholar
  10. 10.
    Guo, Y.N., Fang, M.F., Wang, G.Y., Zeng, K.: Quantum Inf. Process. 15, 2851 (2016)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Guo, Y.N., Fang, M.F., Zhang, S.Y., Liu, X.: Eur. Phys. Lett. 108, 47002 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Jaeger, G., Ann, K.: J. Mod. Opt. 54, 2327 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Ann, K., Jaeger, G.: Phys. Rev. A 76, 044101 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Ramzan, M., Khan, M.K.: Quantum Inf. Process. 11, 443 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Behzadi, N., Faizi, E., Heibati, O.: Quantum Inf. Process. 16, 257 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Tsokeng, A.T., Tchoffo, M., Fai, L.C.: Quantum Inf. Process. 16, 191 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Yang, Y., Wang, A.M.: Chin. Phys. Lett. 30, 080302 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Guo, J.L., Wei, J.L., Qin, W.: Quantum Inf. Process. 14, 1399 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Wang, S.C., Yu, Z.W., Zou, W.J., Wang, X.B.: Phys. Rev. A 89, 022318 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Horodecki, P., Horodecki, M., Horodecki, R.: Phys. Rev. Lett. 82, 1056 (1999)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Dakic, B., Vedral, V., Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Luo, S.L., Fu, S.S.: Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Yan, X.Q., Liu, G.H., Chee, J.: Phys. Rev. A 87, 022340 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Xiao, X., Li, Y.L.: Eur. Phys. J. D 67, 204 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic and Communication EngineeringChangsha UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of PhysicsHunan Normal UniversityChangshaPeople’s Republic of China
  3. 3.The First High School of ChangshaHunanPeople’s Republic of China
  4. 4.College of Mathematics and Computing ScienceChangsha UniversityChangshaPeople’s Republic of China
  5. 5.College of ScienceHunan University of TechnologyZhuzhouPeople’s Republic of China

Personalised recommendations