International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1417–1424 | Cite as

Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

Article

Abstract

The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the “exotic” and “supernatural” dark energy (DE). In fact, the NAT works as an “effective quintessence” and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

Keywords

Negative absolute temperature Cosmic acceleration Ideal gas law Dark energy 

Notes

Acknowledgments

Subhajit Saha was partially supported by SERB, Govt. of India under National Post-doctoral Fellowship Scheme [File No. PDF/2015/000906]. Anindita Mondal is thankful to DST, Govt. of India for providing Senior Research Fellowship. Christian Corda is supported financially by the Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Project No. 1/4717-16.

The authors thank two unknown Reviewers for useful comments and advices.

References

  1. 1.
    Sidharth, B.G.: The universe of fluctations. Int. J. Mod. Phys. A 13, 2599 (1998)ADSCrossRefMATHGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Astron J. 116(3), 1009 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Einstein, A.: Sitzun. Pre. Akad. Wiss. Berlin (Math. Phys.) 1917, 142 (1917)Google Scholar
  5. 5.
    Steinhardt, P.J.: Critical Problems in Physics. Princeton University Press, Princeton (1997)Google Scholar
  6. 6.
    Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fujii, Y., Maeda, K.: The Scalar-Tensor Theory of Gravitation. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Corda, C.: Int. J. Mod. Phys. D 18, 2275 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Bolejko, K., Célérier, M.N., Krasinski, A.: Class. Quantum Grav. 28, 164002 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Chakraborty, S., Saha, S., Corda, C.: Entropy 18(8), 287 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Zeldovich, I.B.: In: Confrontation of Cosmological Theories with Observational Data, pp. 329–333. D. Reidel Publishing Co., Dordrecht (1974)CrossRefGoogle Scholar
  13. 13.
    Bilic, N., Tolic, D.: Phys. Rev. D 91, 104025 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Nunes, R.C., Barnoza, E.M. Jr., Abreu, E.M.C., Neto, J.A.: JCAP 08, 051 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Moradpour, H.: Int. J. Theor. Phys. 55, 4176 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Komatsu, N.: Eur. Phys. J. C 77, 229 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    Moradpour, H., Heydarzade, Y., Darabi, F., Salako, I.G.: Eur. Phys. J. C 77, 259 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Moradpour, H., Nunes, R.C., Abreu, E.M.C., Neto, J.A.: Mod. Phys. Lett. A 32, 1750078 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    Starobinski, A.A.: Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)ADSGoogle Scholar
  20. 20.
    Guth, A.: Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    Vieira, J.P.P., Byrnes, C.T., Lewis, A.: J. Cosmol. Astropart. Phys. 1608, 060 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    Elgaroy, O., Gron, O.: Entropy 15, 3620 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lai, X.M., et al.: Acta Phys. Sin. 57(12), 7955 (2008)Google Scholar
  24. 24.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman and Company, San Francisco (1973)Google Scholar
  25. 25.
    Pavon, D.: private communicationGoogle Scholar
  26. 26.
    Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York (1965)Google Scholar
  27. 27.
    Singh, R.B.: Introduction to Modern Physics. New Age International (2008)Google Scholar
  28. 28.
    Atkins, P.W.: The Laws of Thermodynamics: A Very Short Introduction. Oxford University Press, Oxford (2010)CrossRefGoogle Scholar
  29. 29.
    Braun, S., et al.: Science 339(6115), 52 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Rahvar, S.: arXiv:physics/0603087 (2006)
  31. 31.
    Saha, S.: Europhys. Lett. 114, 59001 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Abraham, E., Penrose, O.: Phys. Rev. E 95, 012125 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Private communications with two unknown ReviewersGoogle Scholar
  34. 34.
    Ramsey, N.F.: Phys. Rev. 103, 2 (1956)ADSCrossRefGoogle Scholar
  35. 35.
    Tremblay, A.M.: Am. J. Phys. 44, 994 (1976)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsPanihati MahavidyalayaKolkataIndia
  2. 2.Department of Astrophysics and CosmologyS. N. Bose National Center for Basic SciencesSalt Lake CityIndia
  3. 3.Research Institute for Astronomy and Astrophysics of Maragha (RIAAM)MaraghaIran

Personalised recommendations