Skip to main content

Advertisement

Log in

Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the “exotic” and “supernatural” dark energy (DE). In fact, the NAT works as an “effective quintessence” and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In SI units it is R = 8.314J/mol.K.

  2. This implies that systems with NATs can never achieve thermodynamic equilibrium.

References

  1. Sidharth, B.G.: The universe of fluctations. Int. J. Mod. Phys. A 13, 2599 (1998)

    Article  ADS  MATH  Google Scholar 

  2. Riess, A.G., et al.: Astron J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  3. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. Einstein, A.: Sitzun. Pre. Akad. Wiss. Berlin (Math. Phys.) 1917, 142 (1917)

    Google Scholar 

  5. Steinhardt, P.J.: Critical Problems in Physics. Princeton University Press, Princeton (1997)

  6. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  7. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fujii, Y., Maeda, K.: The Scalar-Tensor Theory of Gravitation. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  9. Corda, C.: Int. J. Mod. Phys. D 18, 2275 (2009)

    Article  ADS  Google Scholar 

  10. Bolejko, K., Célérier, M.N., Krasinski, A.: Class. Quantum Grav. 28, 164002 (2011)

    Article  ADS  Google Scholar 

  11. Chakraborty, S., Saha, S., Corda, C.: Entropy 18(8), 287 (2016)

    Article  ADS  Google Scholar 

  12. Zeldovich, I.B.: In: Confrontation of Cosmological Theories with Observational Data, pp. 329–333. D. Reidel Publishing Co., Dordrecht (1974)

    Book  Google Scholar 

  13. Bilic, N., Tolic, D.: Phys. Rev. D 91, 104025 (2015)

    Article  ADS  Google Scholar 

  14. Nunes, R.C., Barnoza, E.M. Jr., Abreu, E.M.C., Neto, J.A.: JCAP 08, 051 (2016)

    Article  ADS  Google Scholar 

  15. Moradpour, H.: Int. J. Theor. Phys. 55, 4176 (2016)

    Article  MathSciNet  Google Scholar 

  16. Komatsu, N.: Eur. Phys. J. C 77, 229 (2017)

    Article  ADS  Google Scholar 

  17. Moradpour, H., Heydarzade, Y., Darabi, F., Salako, I.G.: Eur. Phys. J. C 77, 259 (2017)

    Article  ADS  Google Scholar 

  18. Moradpour, H., Nunes, R.C., Abreu, E.M.C., Neto, J.A.: Mod. Phys. Lett. A 32, 1750078 (2017)

    Article  ADS  Google Scholar 

  19. Starobinski, A.A.: Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)

    ADS  Google Scholar 

  20. Guth, A.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  21. Vieira, J.P.P., Byrnes, C.T., Lewis, A.: J. Cosmol. Astropart. Phys. 1608, 060 (2016)

    Article  ADS  Google Scholar 

  22. Elgaroy, O., Gron, O.: Entropy 15, 3620 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lai, X.M., et al.: Acta Phys. Sin. 57(12), 7955 (2008)

    Google Scholar 

  24. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman and Company, San Francisco (1973)

    Google Scholar 

  25. Pavon, D.: private communication

  26. Reif, F.: Fundamentals of Statistical and Thermal Physics. McGraw Hill, New York (1965)

  27. Singh, R.B.: Introduction to Modern Physics. New Age International (2008)

  28. Atkins, P.W.: The Laws of Thermodynamics: A Very Short Introduction. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  29. Braun, S., et al.: Science 339(6115), 52 (2013)

    Article  ADS  Google Scholar 

  30. Rahvar, S.: arXiv:physics/0603087 (2006)

  31. Saha, S.: Europhys. Lett. 114, 59001 (2016)

    Article  ADS  Google Scholar 

  32. Abraham, E., Penrose, O.: Phys. Rev. E 95, 012125 (2017)

    Article  ADS  Google Scholar 

  33. Private communications with two unknown Reviewers

  34. Ramsey, N.F.: Phys. Rev. 103, 2 (1956)

    Article  ADS  Google Scholar 

  35. Tremblay, A.M.: Am. J. Phys. 44, 994 (1976)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Subhajit Saha was partially supported by SERB, Govt. of India under National Post-doctoral Fellowship Scheme [File No. PDF/2015/000906]. Anindita Mondal is thankful to DST, Govt. of India for providing Senior Research Fellowship. Christian Corda is supported financially by the Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Project No. 1/4717-16.

The authors thank two unknown Reviewers for useful comments and advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhajit Saha.

Appendix A

Appendix A

Proposition

Negative absolute temperatures are hotter than positive absolute temperatures.

Proof

Consider two bodies (1 ∖ & 2) at different temperatures (T1∖ & T2)in contact with one another. Suppose there is a transfer of a small amountof heat Q from body 1 to body 2, which changes the entropy of body 1 by− Q/T1and that ofbody 2 by Q/T2, so that the total change in entropy is

$$dS=Q\left( \frac{1}{T_{2}}-\frac{1}{T_{1}}\right). $$

The above quantity must be positive according to the second law. Now, if T1 < 0 and T2 > 0, then \(\frac {1}{T2}-\frac {1}{T1}>0\), which implies that body 1 (with a negative temperature) can transfer heat to body 2 (with a positive temperature), but not the other way around. Hence, negative absolute temperatures are hotter than positive absolute temperatures. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Mondal, A. & Corda, C. Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?. Int J Theor Phys 57, 1417–1424 (2018). https://doi.org/10.1007/s10773-018-3670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3670-1

Keywords

Navigation