International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1404–1409 | Cite as

Newtonian Gravity Reformulated

Article
  • 72 Downloads

Abstract

With reference to MOND we propose a reformulation of Newton’s theory of gravity in the sense of the static electrodynamics introducing a “material” quantity in analogy to the dielectric “constant”. We propose that this quantity is induced by vacuum polarizations generated by the gravitational field itself. Herewith the flat rotation curves of the spiral galaxies can be explained as well as the observed high velocities near the center of the galaxy should be reconsidered.

Keywords

Flat rotation curves MOND Tully-Fisher law Vacuum-polarisation 

References

  1. 1.
    Milgrom, M.: Ann. Phys. 229, 384 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Bekenstein, J. D.: Contemp. Phys. 47, 387 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Tully, R. B., Fisher, J. R.: Astron. Astrophys. 54, 661 (1977)ADSGoogle Scholar
  4. 4.
    A similar phenomenon exists in the electrodynamics in the case of the Scharnhorst-Barton effect, where the value of 𝜖 decreases under the value of 1 in consequence of a reduction of the vacuum polarizations. See G. Barton and K. Scharnhorst: J. Phys. A 26: 2037 (1993)Google Scholar
  5. 5.
    Hajdukovic, D. S.: Astr. Phys. Space Sci. 334, 215 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Hajdukovic, D. S.: Phys. Univ. 3, 34 (2014). see also the literature cited thereCrossRefGoogle Scholar
  7. 7.
    Ebner, D., Dehnen, H.: Phys. Bl. 49, 1013 (1993)CrossRefGoogle Scholar
  8. 8.
    Ebner, D., Dehnen, H.: Found. Phys. 26, 105 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    Moffet, J. W.: J. Cosmol. Astropart. Phys. 2006(3), 004 (2006)CrossRefGoogle Scholar
  10. 10.
    See e.g. H. A. Buchdahl: Month. Notic. R. Astronom. Soc. 150, 1 (1970)Google Scholar
  11. 11.
    Born, M., Infeld, L.: Proc. Roy. Soc. A 144, 425 (1934). see also J. F. Plebanski, Lectures on Nonlinear Electrodynamics (Nordita, Copenhagen 1970)ADSCrossRefGoogle Scholar
  12. 12.
    Heisenberg, W., Euler, H.: Zs. f. Phys. 98, 714 (1936)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations