Skip to main content
Log in

Authentication of Quantum Secure Communication Under Noise

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze the properties of immune noise model and propose a noise model that achieves high fidelity and in secure channel. We focuse on four different types of channel properties which include bit-flipping noise, phase-flip or phase-damping noise, depolarization noise, and amplitude-damping noise. Finally, we analyze Alice’s qubit efficiency and all quantum bit efficiency in noise, and further design a high-fidelity immunity noise model based on density matrix. This research article is one of the cores of constructing a unified framework for high-fidelity secure communication channels. we also using decoherence-free subspaces (DFS) immune combined noise characteristics, a generalized entangled states to convert IDs that are initially shared by both the parties into logical quantum states for noise immunity, randomly mixed message sequence and transmitted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cao, Z.L., Yang, M., Guo, G.C.: The scheme for realizing probabilistic teleportation of atomic states and purifying the quantum channel on cavity QED. Phys. Lett. A 308(5), 349–354 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69(20), 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Ye, L., Guo, G.C.: Scheme for implementing quantum dense coding in cavity QED. Phys. Rev. A 71(3), 034304 (2005)

    Article  ADS  Google Scholar 

  4. Saha, D, Panigrahi, P.K.: N-qubit quantum teleportation, information splitting and superdense coding through the composite GHZCBell channel [J]. Quantum Inf. Process. 11(2), 615–628 (2012)

    Article  MathSciNet  Google Scholar 

  5. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using a genuinely entangled five-qubit state and a Bell-state. Quantum Inf. Process. 11(2), 563–569 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hou, K., Liu, G.H., Zhang, X.X., Sheng, S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit steta using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011). 11(2),615–628(2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Man, Z.X., Xia, Y.J., An, N.B.: Quantum state sharing of an arbitrary multi-qubit state using non-maximally entangled GHZ states. Eur. Phys. J. D 42(2), 333–340 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  10. Murao, M., Jonathan, D., Plenio, M.B., et al.: Quantum telecloning and multiparticle entanglement[J]. Phys. Rev. A 59(1), 156 (1999)

    Article  ADS  Google Scholar 

  11. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret[J]. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  12. Wang, X.W., Zhang D.Y., Tang, S.Q., et al.: Multiparty hierarchical quantum-information splitting [J]. J. Phys. B Atomic Mol. Phys. 44(3), 035505 (2011)

    Article  ADS  Google Scholar 

  13. Wang, X.W., Zhang, D.Y., Tang, S.Q., et al.: Hierarchical quantum information splitting with six-photon cluster states[J]. Int. J. Theor. Phys. 49(11), 2691–2697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, XW, Xia, LX, Wang, Z., et al.: Hierarchical quantum-information splitting[J]. Optics Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  15. Luo, MX, Deng, Y.: Quantum splitting an arbitrary three-qubit state with -state[J]. Quantum Inf. Process. 12(2), 773–784 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. You-Bang, Z., Qun-Yong, Z., Yu-Wu, W.: Schemes for splitting quantum information with four-particle genuine entangled states[J]. Commun. Theor. Phys. 53 (5), 847 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Xiu, XM, Li, QY, Dong, L, et al.: Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels[J]. Quantum Inf. Process. 14(1), 361–372 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Nie, Y., Li, Y., Wang, Z.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zhang, W, Liu, YM, Yin, XF, et al.: Splitting four ensembles of two-qubit quantum information via three Einstein-Podolsky-Rosen pairs[J]. The European Phys. J. D 55(1), 189–195 (2009)

    Article  ADS  Google Scholar 

  20. Dong, L, Xiu, XM, Ren, YP, et al.: Teleportation of a two-qubit arbitrary unknown state using a four-qubit genuine entangled state with the combination of bell-state measurements[J]. J. Exp. Theor. Phys. 116(1), 15–19 (2013)

    Article  ADS  Google Scholar 

  21. Xiang, Y., Mo, Z.W.: Quantum secret sharing protocol based on four-dimensional three-particle entangled states[J]. Mod. Phys. Lett. B, 1550267 (2016)

  22. Matsumoto, R.: Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields (full version arXiv:1410.5126) [J] (2015)

  23. Nguyen, B.A.: Quantum dialogue [J]. Phys. Lett. A 328(1), 6–10 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Xin, J., Shou, Z.: Secure quantum dialogue based on single-photon [J]. Chinese Phys. 15(7), 1418–1420 (2006)

    Article  ADS  Google Scholar 

  25. Xin, J., Jing, X.R., Zhang, Y.Q., Shou, Z.: Quantum dialogue by using single photons [J]. Alta Sinise Quantum Optical 14(3), 273–276 (2008)

    Google Scholar 

  26. Shi, G.F., Xi, X.Q., Hu, M.L., et al.: Quantum dialogue by using single photons [J]. Optics Commun. 283(9), 1984–1986 (2010)

    Article  ADS  Google Scholar 

  27. Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled-not operations [J]. J. Mod. Opt. 57(20), 2027–2030 (2010)

    Article  ADS  Google Scholar 

  28. Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons [J]. Sci. China, Ser. G 50(5), 558–562 (2007)

    Article  Google Scholar 

  29. Gao, G., Wang, L.P.: A protocol for bidirectional quantum secure communication based on genuine four-particle entangled states [J]. Commun. Theor. Phys. 54(3), 447–451 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gao, G., Fang, M., Wang, Y., et al.: A ping-pong quantum dialogue scheme using genuine four-particle entangled states [J]. Int. J. Theor. Phys. 50(10), 3089–3095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, D.S., Ma, W.P., et al.: Quantum dialogue with authentication based on Bell states [J]. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the en-tanglement swapping between any two Bell states and the shared secret Bell state [J]. Phys. Scripter 89(1), 015103 (2014)

    Article  ADS  Google Scholar 

  33. Bell, B.A., Markham, D., Herrera-Mart, D.A., et al.: Experimental demonstration of graph-state quantum secret sharing[J]. Nature Commun., 5 (2014)

  34. Lin, TH, Lin, CY, Hwang, T.: Man-in-the-middle attack on quantum dialogue with au-thentication based on Bell states [J]. Int. J. Theor. Phys. 52(9), 3199–3203 (2013)

    Article  MATH  Google Scholar 

  35. Bauchi, L., Baumstein, S.L., S.P.: Quantum fidelity for arbitrary Gaussian states [J]. Phys. Rev. Lett. 115(26), 260501 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61802033), Science and Technology projects in Sichuan Province (2016FZ0002, 2015JY0178, 2015KZ002, 2015JY0030, 2016ZC2575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-fen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Df., Wang, Rj., Yang, Ym. et al. Authentication of Quantum Secure Communication Under Noise. Int J Theor Phys 58, 1079–1087 (2019). https://doi.org/10.1007/s10773-018-03999-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-03999-0

Keywords

Navigation