International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1265–1271 | Cite as

Quantum Entanglement Death Problem Depict in Two Atomic Systems

  • Dong-fen Li
  • Mingzhe Liu


In this paper, we present a scheme that solves the entanglement death problem by using a quantum entanglement model. We solved this problem by analyzing the evolutionary properties of entanglement together with the time evolution of the two atomic systems that are independent of each other in space. We then design the related parameter of entanglement death and entanglement, in order to find out the cause of the entanglement death in order to address them, thereby improving the quality of quantum communication.


Entangled death Entanglement Quantum evolution Two atomic systems 



This work is supported by Fundamental Research Funds for the Central Universities (ZYGX2014J051, ZYGX2014J066), Science and Technology projects in Sichuan Province (2015JY0178, 2014GZ0109, 2015KZ002, 2015JY0030), China Postdoctoral Science Foundation (2015M572464) and The Project-sponsored by OATF, UESTC, this work also is supported by Innovative talents training(Graduate)-Outstanding Doctoral academic support program, UESTC.


  1. 1.
    Zhang, C.: Quantum entanglement in a system of Bose-Einstein condensate interacting with Schrodinger cat state. Optoelectron. Lett. 6(2), 140–143 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    McAneney, H., Lee, J., Kim, M.S.: Many-body entanglement in decoherence processes. Phys. Rev. A 68(6), 063814 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Hamieh, S.D., Katsnelson, M.I.: Quantum entanglement dynamics and decoherence wave in spin chains at finite temperatures. Phys. Rev. A 72(3), 032316 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Ikram, M., Li, F., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation environments. Phys. Rev. A 75(6), 062336 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 1998 (2245)Google Scholar
  6. 6.
    Zyczkowski, K., Horodecki, P., Sanpera, A., et al.: Volume of the set of separable states. Phys. Rev. A 58(2), 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Jiang, C.L., Fang, M.F., Wu, Z.Z.: The entanglement dynamics of two entangled atoms in the dissipative cavity (2006)Google Scholar
  8. 8.
    Xi-Wen, H., Chuan-Ming, C.: Dynamical entanglement for Fermi coupled stretching and bending modes. Chin. Phys. B 18(7), 2719 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Xu, J.B., Li, S.B.: Control of the entanglement of two atoms in an optical cavity via white noise. New J. Phys. 7(1), 72 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93(14), 140404 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97(14), 140403 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Ficek, Z., Tanas, R.: Dark periods and revivals of entanglement in a two-qubit system. Phys. Rev. A 74(2), 024304 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Ficek, Z., Tanas, R.: Delayed sudden birth of entanglement. Phys. Rev. A 77 (5), 054301 (2008)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Weinstein, Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79(1), 012318 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Abbott, B.P., Abbott, R., Adhikari, R., et al.: Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGOs fifth science run. Phys. Rev. D 80(4), 047101 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Guo, L, Liang, X.T.: Entanglement evolution of field-atom and atom-atom in Tavis-Cummings model. 65(8), 094211 (2009)Google Scholar
  18. 18.
    Cheng, Q.L., Xie, S.Y., Yang, Y.P.: The influence of the field frequency modulation on quantum entanglement via two-photon process. 29(9), 094252 (1996)Google Scholar
  19. 19.
    Xiang-Ping, L., Jian-Shu, F., Mao-Fa, F.: Sudden death and revival of entanglement of two qubits coupled collectively to a thermal reservoir. Chin. Phys. B 19(9), 094203 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323(5914), 598–601 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Derkacz, L., Jakbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms. Phys. Rev. A 74(3), 032313 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Derkacz, L., Jakbczyk, L.: Vacuum-induced stationary entanglement in radiatively coupled three-level atoms. J. Phys. A Math. Theor. 41(20), 205304 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhou, L., Yang, G.H., Patnaik, A.K.: Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping. Phys. Rev. A 79(6), 062102 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Network SecurityChengdu University of TechnologyChengduChina

Personalised recommendations