International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 570–581 | Cite as

Robust Deterministic Controlled Phase-Flip Gate and Controlled-Not Gate Based on Atomic Ensembles Embedded in Double-Sided Optical Cavities

  • A-Peng Liu
  • Liu-Yong Cheng
  • Qi Guo
  • Shou Zhang


We first propose a scheme for controlled phase-flip gate between a flying photon qubit and the collective spin wave (magnon) of an atomic ensemble assisted by double-sided cavity quantum systems. Then we propose a deterministic controlled-not gate on magnon qubits with parity-check building blocks. Both the gates can be accomplished with 100% success probability in principle. Atomic ensemble is employed so that light-matter coupling is remarkably improved by collective enhancement. We assess the performance of the gates and the results show that they can be faithfully constituted with current experimental techniques.


Quantum information processing Quantum logic gates Cavity quantum electrodynamics Quantum computation 



This work was supported by the Scientific Research Foundation of Shanxi Institute of Technology No. 201706001, and the National Natural Science Foundation of China under Grants No. 11604190 and No. 61465013.


  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Shi, Y.Y.: Both Toffoli and controlled-not need little help to do universal quantum computation. Quantum Inf. Comput. 3, 084 (2003)MathSciNetGoogle Scholar
  4. 4.
    Duan, L.M., Wang, B., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    An, J.H., Feng, M., Oh, C.H.: Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities. Phys. Rev. A 79, 032303 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Fedorov, A., Lars, S, Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170–172 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Hua, M., Tao, M.J., Deng, F.G., Long, G.L.: One-step resonant controlled-phase gate on distant transmon qutrits in different 1D superconducting resonators. Sci. Rep. 5, 14541 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Wei, H.R., Deng, F.G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001)ADSCrossRefMATHGoogle Scholar
  14. 14.
    DiVicenzo, D.P.: The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)CrossRefGoogle Scholar
  15. 15.
    Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66, 063814 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nat. Photon. 3, 95–98 (2009)ADSCrossRefMATHGoogle Scholar
  17. 17.
    Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Friedler, I., Petrosyan, D., Fleischhauer, M., Kurizki, G.: Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    Sevincli, S., Henkel, N., Ates, C., Pohl, T.: Nonlocal nonlinear optics in Cold Rydberg gases. Phys. Rev. Lett. 107, 153001 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, T.J., Wang, C.: Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A 90, 052310 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Wei, H.R., Long, G.L.: Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities. Sci. Rep. 5, 12918 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Schmidt-Kaler, F., Häffner, H., Riebe, M., Gulde, S., Lancaster, G.P.T., Deuschle, T., Becher, C., Roos, C.F., Eschner, J., Blatt, R.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408–411 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Feng, G., Xu, G., Long, G.L.: Experimental realization of nonadiabatic Holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Bonato, C., Haupt, F., Oemrawsingh, S.S.R., Gudat, J., Ding, D., van Exter, M.P., Bouwmeester, D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Li, T., Deng, F.G.: Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-Q optical microcavities. Phys. Rev. A 94, 062310 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Wang, G.Y., Ai, Q., Ren, B.C., Li, T., Deng, F.G.: Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express 24, 28444–28458 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    Steck, D.A.: Rubidium 87 D Line Data., revision 2.1.4, 23 (2010)
  34. 34.
    Shih, C.Y., Chapman, M.S.: Nondestructive light-shift measurements of single atoms in optical dipole traps. Phys. Rev. A 87, 063408 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Brennecke, F., Donner, T., Ritter, S., Bourdel, T., Köhl, M., Esslinger, T.: Cavity QED with a Bose–Einstein condensate. Nature (London) 450, 268–271 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Brennecke, F., Ritter, S., Donner, T., Esslinger, T.: Cavity optomechanics with a Bose-Einstein condensate. Science 322, 235–238 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Liu, A.P., Cheng, L.Y., Guo, Q., Zhang, S., Zhao, M.X.: Universal quantum gates for hybrid system assisted by atomic ensembles embedded in doublesided optical cavities. Sci. Rep. 7, 43675 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Poyatos, J.F., Cirac, J.I., Zoller, P.: Complete characterization of a quantum process: the two-bit quantum gate. Phys. Rev. Lett. 78, 390–393 (1997)ADSCrossRefGoogle Scholar
  39. 39.
    Xu, Z., Wu, Y., Liu, H., Li, S., Wang, H.: Fast manipulation of spin-wave excitations in an atomic ensemble. Phys. Rev. A 88, 013423 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Rui, J., Jiang, Y., Yang, S.J., Zhao, B., Bao, X.H., Pan, J.W.: Operating spin echo in the quantum regime for an atomic-ensemble quantum memory. Phys. Rev. Lett. 115, 133002 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3, 706–714 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Gorshkov, A.V., André, A., Fleischhauer, M., Sørensen, A.S., Lukin, M.D.: Universal approach to optimal photon storage in atomic media. Phys. Rev. Lett. 98, 123601 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A-Peng Liu
    • 1
  • Liu-Yong Cheng
    • 2
  • Qi Guo
    • 3
  • Shou Zhang
    • 4
  1. 1.Shanxi Institute of TechnologyYangquanChina
  2. 2.School of Physics and Information EngineeringShanxi Normal UniversityLinfenChina
  3. 3.College of Physics and Electronics EngineeringShanxi UniversityTaiyuanChina
  4. 4.Department of Physics, College of ScienceYanbian UniversityYanjiChina

Personalised recommendations