Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 562–569 | Cite as

Photon-Selective Spin-Dependent Transport Through a Quantum Dot Driven by Electrical and Thermal Biases

Article
  • 97 Downloads

Abstract

Impacts of both the electrical and thermal biases on the spin-dependent transport through a quantum dot are studied by using the nonequilibrium Green’s function technique. Due to the Zeeman splitting of the dot level, the spin polarization of the current approaches to ± 1 at some photon-induced transport channels when the spin-split dot levels locate in between the conduction window opened by the electrical bias. While under zero electrical bias but finite thermal bias, a totally 100% spin-polarized current emerges at some photon frequencies, where spin-up and spin-down electrons are selected with the help of the photon field. Moreover, for several photon frequencies, the currents of different spin components may tunnel through the dot in opposite directions, resulting in a pure spin current. We find that in both cases the intensity and the position of the resonant peaks of the spin-polarized currents are sensitive to the intradot Coulomb interaction. When the two biases coexist in the system, the intensity and the spin-polarization of the currents can be effectively adjusted by changing their relative strengthes.

Keywords

Quantum dot Photon field Spin-polarized current Thermal bias 

Notes

Acknowledgements

This work is supported by the NSFC (Grant Nos. 61274101 and 51362031) and the Initial Project of UESTC, Zhongshan Institute (415YKQ02). Liu acknowledges support from the China Postdoctoral Science Foundation (Grant No. 2014M562301).

References

  1. 1.
    žutić, I., Fabian, J., Sarma, S.D.: Rev. Mod. Phys. 76, 323 (2011)Google Scholar
  2. 2.
    Wang, G., Zhu, C.R., Liu, B.L., Ye, H., Balocchi, A., Amand, T., Urbaszek, B., Yang, H., Marie, X.: Phys. Rev. B 90, 121202 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Falk, A.L., Klimov, P.V., Ivádi, V., Szász, K., Christle, D.J., Koehl, W.F., Gali, Á, Awschalom, D.D.: Phys. Rev. Lett. 114, 247603 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Huang, Y.Q., Song, Y.X., Wang, S.M., Buyanova, I.A., Chen, W.M.: Nat. Commun. 8, 15401 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    Koppens, F.H.L., Buizerk, C., Tielrooij, K.J., Vink, I.T., Nowack, K.C., Meunier, T., Kouwenhoven, L.P., Vandersypen, L.M.K.: Nature (London) 442, 766 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Press, D., Ladd, T.D., Zhang, B.Y., Yamamoto, Y.: Nature (London) 456, 218 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Atatüre, M., Dreiser, J., Badolato, A., Högele, A., Karrai, K., Imamoglu, A.: Science 312, 551 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Xu, X.D., Wu, Y.W., Sun, B., Huang, Q., Cheng, J., Steel, D.G., Bracker, A.S., Gammon, D., Emary, C., Sham, L.J.: Phys. Rev. Lett. 99, 097401 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Ebbens, A., Krizhanovskii, D.N., Tartakovskii, A.I., Pulizzi, F., Wright, T., Savelyev, A.V., Skolnick, M.S., Hopkinson, M.: Phys. Rev. B 72, 073307 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Clark, S.M., Fu, K.M.C., Ladd, T.D., Yamamoto, Y.: Phys. Rev. Lett. 99, 040501 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Nature (London) 430, 431 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Hanson, R., Willems van Beveren, L.H., Vink, I.T., Elzerman, J.M., Naber, W.J.M., Koppens, F.H.L., Kouwenhoven, L.P., Vandersypen, L.M.K.: Phys. Rev. Lett. 94, 196802 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Sun, Q.F., Guo, H., Wang, J.: Phys. Rev. Lett. 90, 258301 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Djuric, I., Search, C.P.: Phys. Rev. B. 74, 115327 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Bauer, G.E.W., MacDonald, A.H., Maekawa, S.: Solid State Commun. 150, 459 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Bauer, G.E.W., Saitoh, E., van Wees, B.J.: Nature Mater. 11, 391 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Dubi, Y., Di Ventra, M.: Rev. Mod. Phys. 83, 131 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Li, N.B., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B.W.: Rev. Mod. Phys. 84, 1045 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Nature (London) 455, 778 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Dubi, Y., Di Ventra, M.: Phys. Rev. B 79, 081302 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Bathen, M.E., Linder, J.: Sci. Rep. 7, 41409 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    Qi, F.H., Yin, Y.B., Jin, G.J.: Phys. Rev. B 83, 075310 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Bai, X.F., Chi, F., Zheng, J., Li, Y.N.: Chin. Phys. B 21, 077301 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Ying, Y.B., Jin, G.J.: Appl. Phys. Lett. 96, 093104 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Chi, F., Zheng, J., Liu, Y.S., Guo, Y.: Appl. Phys. Lett. 100, 233106 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Liu, Y.S., Yang, X.F., Chi, F., Si, M.S., Guo, Y.: Appl. Phys. Lett. 101, 213109 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    Chi, F., Liu, L.M., Sun, L.L.: Chin. Phys. B 26, 037304 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    Souza, F.M., Carrara, T.L., Vernek, E.: Phys. Rev. B 84, 115322 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Dong, B., Cui, H.L., Lei, X.L.: Phys. Rev. B 69, 205315 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Liu, Y.S., Chen, H., Fan, X.H., Yang, X.F.: Phys. Rev. B 73, 115310 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Electronic and Information EngineeringUESTC of China, Zhongshan InstituteZhongshanChina

Personalised recommendations