Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 539–548 | Cite as

Properties of Two Two-level Atoms Interacting with Intensity-Dependent Coupling

Article
  • 143 Downloads

Abstract

We discuss some new features of the model of two two-level atoms interacting with two single-mode thermal cavity field via multi-photon transitions under intensity-dependent coupling. We examine the dynamics of quantum and classical correlations of the system initially exists in Werner states. The results show that the sudden death and sudden birth of quantum entanglement occur but the geometric measure of quantum discord remains non-zero. It is observed that, by increasing the number of photons, the periods become shorter and the quantum discord and entanglement become irregular.

Keywords

Intensity-dependent coupling Multi-photon transition Entanglement Quantum correlation 

References

  1. 1.
    Plenio, M.B., Vedral, V.: Contemp. Phys. 39, 431–446 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  3. 3.
    Audretsch, J.: Entangled systems. Wiley-VCH, Weinheim (2007)CrossRefMATHGoogle Scholar
  4. 4.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Vedral, V.: Introduction to quantum information science. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Phoenix, S.J.D., Knight, P.L.: Phys. Rev. A 44, 6023 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Phoenix, S.J.D., Knight, P.L.: Phys. Rev. Lett. 66, 2833 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    Gea-Banacloche, J.: Phys. Rev. Lett. 65, 3385 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    Gea-Banacloche, J.: Phys. Rev. A 44, 5913 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Farhadmotamed, F., Wonderen, A.J., Lendi, K.: J. Phys. A: Math. Gen. 31, 3395 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Fang, M.F., Liu, H.E.: Phys. Lett. A 200, 250 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    He, Q.-L., Xu, J.-B.: Opt. Commun. 284, 1714–1718 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Wang, C.-Z., Li, C., Li, J.-F.: Opt. Commun. 282, 1160–1166 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Xu, Q.-F., Hui, X.-Z., Chen, J.-N., Cheng, Z.: Eur. Phys. J. D 66, 86 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Tahira, R., Ikram, M., Zubairy, S.: Opt. Commun. 284, 3643–3648 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, Y.-Q., Tan, L.: Eur. Phys. J. D 64, 585–592 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Qiang, W.-C., Zhang, L.: Phys. Lett. B 742, 383–389 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Henderson, L., Vedral, V.: J. Phys. A 34, 6899 (2001)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Yan, X.-Q., Zhang, B.-Y.: Ann. Phys. 349, 350–356 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Ali, M., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, J., Deng, J., Jing, J.: Phys. Rev. A 81, 052120 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Rulli, C.C., Sarandy, M.S.: Phys. Rev. A 84, 042109 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Datta, A.: Phys. Rev. A 80, 052304 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, S.: Phys. Rev. A 77, 042303 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Lang, M.D., Caves, C.M.: Phys. Rev. Lett. 105, 150501 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Dakić, B., Vedral, V., Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Rana, S., Parashar, P.: Phys. Rev. A 85, 024102 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Girolami, D., Vasile, R., Adesso, G.: Int. J. Mod. Phys. B 27, 1345020 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Tufarelli, T., et al.: Phys. Rev. A 86, 052326 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    Yin, X., et al.: J. Phys. B: At. Mol. Opt. Phys. 44, 245502 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Luo, S., Fu, S.: Phys. Rev. A 82, 034302 (2010)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, J.H., Liang, M.L., Zhang, F.L., Yang, H.: Rom. Journ. Phys. 58, 904–912 (2013)Google Scholar
  34. 34.
    Hu, Y.-H., Fang, M.-F.: Cent. Eur. J. Phys. 10(1), 145–150 (2012)Google Scholar
  35. 35.
    Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Lu, X. M., Xi, Z.J., Sun, Z., Wang, X.: Quantum Inf. Comput. 10, 0994 (2010)MathSciNetGoogle Scholar
  37. 37.
    Luo, S.: Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Wang, C.-Z., Li, C.-X., Nie, L.-Y., Li, J.-F.: J. Phys. B: At. Mol. Opt. Phys. 44, 015503 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Zidan, N., Quant, J.: Inf. Sci. 4, 104 (2014)Google Scholar
  40. 40.
    Zidan, N.: Appl. Math. 5, 2485 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Altintas, F.: Opt. Commun. 283, 5264 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    Mi, Y.-J.: Int. J. Theor. Phys. 51, 544–553 (2012)CrossRefGoogle Scholar
  43. 43.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Yu, T., Eberly, J.H.: Phys. Rev. Lett. 97, 140403 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
corrected publication November/2017

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Engineering Math and Physics Department, Faculty of EngineeringCairo UniversityGizaEgypt
  3. 3.Zewail City of Science and TechnologyUniversity of Science and TechnologyGizaEgypt

Personalised recommendations