International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 523–532 | Cite as

A Novel Scheme for Bidirectional and Hybrid Quantum Information Transmission via a Seven-Qubit State



In this paper, we present a novel scheme for bidirectional and hybrid quantum information transmission via a seven-qubit state. We demonstrate that under the control of the supervisor two distant participants can simultaneously and deterministically exchange their states with each other no matter whether they know the states or not. In our scheme, Alice can teleport an arbitrary single-qubit state (two-qubit state) to Bob and Bob can prepare a known two-qubit state (single-qubit state) for Alice simultaneously via the control of the supervisor Charlie. Compared with previous studies for single bidirectional quantum teleportation or single bidirectional remote state preparation schemes, our protocol is a kind of hybrid approach for quantum information transmission. Furthermore, it achieves success with unit probability. Notably, since only pauli operations and two-qubit and single-qubit measurements are used in our schemes, it is flexible in physical experiments.


Asymmetric bidirectional quantum information communication Quantum teleportation Remote state preparation Cryptography Seven-qubit entangled state 



This work is supported by the National Natural Science Foundation of China (No. 61473199 and No. 61104002), Youth Fund Project of the Natural Science Foundation of Jiangsu Province (No.BK20140305), Project supported by JiangSu Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, China (Grant No. KJS1128) and Key Lab of Cognitive Radio & Signal Processing, Guilin Univ. of Electronic Technology (No. 2013KF05).


  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Tan, X., Zhang, X., Fang, J.: Perfect quantum teleportation by four-particle cluster state. Inf. Process. Lett. 116(5), 347–350 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Yan, F.L.: Probabilistic teleportation via a non-maximally entangled GHZ state. Chin. Sci. Bull. 55(10), 902–906 (2010)CrossRefGoogle Scholar
  4. 4.
    Wang, Y.H., Song, H.S.: Preparation of multi-atom specially entangled W-class state and splitting quantum information. Chin. Sci. Bull. 54(15), 2599–2605 (2009)Google Scholar
  5. 5.
    Tian, D.P.: Teleportation of an arbitrary two-qudit state based on the non-maximally four-qudit cluster state. Sci. China Ser. G-Phys. Mech. Astron. 51(10), 1523–1528 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54(5), 1–9 (2015)ADSMATHGoogle Scholar
  7. 7.
    Yin, X.-R., et al.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process. 12(9), 3093–3102 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Man, Z.X, Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 1–17 (2015)MathSciNetGoogle Scholar
  10. 10.
    Shi, Y., Muhutijiang, B., Zhang, F.Y., Li, C., Song, H.S.: Bidirectional storing and exchanging of quantum message in a two-atom system. Int. J. Theor. Phys. 51(8), 2552–2558 (2012)CrossRefMATHGoogle Scholar
  11. 11.
    Thapliya, K., Verma, A., Pathak, A.: A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf. Process. 14(12), 4601–4614 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Choudhury, B.S., Dhara, A.: A bidirectional teleportation protocol for arbitrary two-qubit state under the supervision of a third party. Int. J. Theor. Phys. 55(4), 2275–2285 (2016)CrossRefMATHGoogle Scholar
  13. 13.
    Zha, X.W., Zou, Z.C., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster State. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14(6), 2195–2210 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 12313 (1999)CrossRefGoogle Scholar
  16. 16.
    Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(63), 94–98 (2001)Google Scholar
  17. 17.
    Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Liu, J.M., Feng, X.L., et al.: Remote preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87(3), 30006 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Li, Y.H., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Zhang, P., You, B., Cen, L.X.: Stabilized quantum coherence and remote state preparation in structured environments. Chin. Sci. Bull. 59(29-30), 3841–3846 (2014)Google Scholar
  23. 23.
    Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B, At. Mol. Opt. Phys. 87(44), 075501 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Chang, C.H., Luo, Y.P., Yang, C.W., Hwang, T.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Luo, M.X., Chen, X.B., et al.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Nguyen, B.A.: Joint remote preparation of a general two-qubit state. J. Phys. B: At. Mol. Opt. Phys. 42(12), 125501 (2009)CrossRefGoogle Scholar
  27. 27.
    Wang, Z.Y.: General controlled remote preparation of a two-qubit state via an asymmetric quantum channel. Commun. Theor. Phys. 55(2), 244–250 (2011)ADSCrossRefMATHGoogle Scholar
  28. 28.
    Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14(9), 3441–3464 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Cao, T.B., An, N.B.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. Nanotechnol. 5(1), 015003 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 1–4 (2016)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Wang, X.Y., et al.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56(4), 1052–1058 (2017)CrossRefGoogle Scholar
  33. 33.
    Wu, C., Qi, B., Chen, C., Dong, D.: Robust learning control design for quantum unitary transformations. IEEE Trans. Cybern. 99, 1–13 (2016)Google Scholar
  34. 34.
    Chen, C., Long, R., Qi, B., Dong, D.: Sampling-based learning control of quantum systems via path planning. Control Theory Appl. Lett. 8(15), 1513–1522 (2014)CrossRefGoogle Scholar
  35. 35.
    Dong, D., Wu, C., Chen, C., et al.: Learning robust pulses for generating universal quantum gates. Sci. Rep. 6, 36090 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    Dong, D., Petersen, I.R.: Notes on sliding mode control of two-level quantum systems. Automatica 48(5), 725–735 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Miranowicz, A., Leonski, W.: Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers. J. Phys. B At. Mol. Opt. Phys. 39(39), 1683–1700 (2012)ADSGoogle Scholar
  38. 38.
    Saif, F, Javed, M.: Generation of maximally entangled states of two cavity modes. Appl. Math. Inf. Sci. 1(3), 323–332 (2006)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Electronics & Information EngineeringSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations