Skip to main content
Log in

Quantum Teleportation of Eight-Qubit State via Six-Qubit Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel quantum teleportation protocol for certain class of eight-qubit state is proposed. We utilize a six-qubit cluster state as quantum channel. In our scheme, the sender performs four controlled-NOT operations and a six-qubit von-Neumann projective measurement, the original state with deterministic probability can be reconstructed by the receiver. Higher efficiency can be achieved based on our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 94–98 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics 8, 770–774 (2014)

    Article  ADS  Google Scholar 

  3. Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  4. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 22338–22345 (2005)

    Article  ADS  Google Scholar 

  5. Li, K., Kong, F.Z., Yang, M., Fatih, O., Yang, Q., Cao, Z.L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15, 3137–3150 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W-states. Phys. Rev. A 74(6), 180–180 (2006)

    Article  Google Scholar 

  7. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Pati, A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 022308 (2000)

    Article  ADS  Google Scholar 

  9. Shima, H., Monireh, H.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process 15, 905–912 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang, L.Q., Zha, X.W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283, 4118 (2010)

    Article  ADS  Google Scholar 

  11. Pakhshan, E., Pouria, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Int. J. Theor. Phys. 13, 1789–1811 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78(1), 3332–3335 (2008)

    Article  Google Scholar 

  13. Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48(2), 516–521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-Like state. Int. J. Theor. Phys. 53, 1322–1324 (2013)

    Article  MATH  Google Scholar 

  16. Zhu, H.P.: Perfect Teleportation of an arbitrary two-qubit state via GHZ-Like states. Int. J. Theor. Phys. 53, 4095–4097 (2014)

    Article  MATH  Google Scholar 

  17. Choudhury, B S, Dhara, A: A probabilistic quantum communication protocol using mixed entangled channel. Phys. Part. Nuclei 13(3), 336–341 (2016)

    Article  Google Scholar 

  18. Brigel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  19. Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464–466 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Generation of cluster states. Phys. Rev. A 73, 1–6 (2006)

    Google Scholar 

  21. Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)

    Article  MATH  Google Scholar 

  22. Tan, X.Q., Zhang, X.Q., Fang, J.B.: Perfect quantum teleportation by four-particle cluster state. Inform. Process. Lett. 116, 347–350 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sang, M.H.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55(3), 1333–1335 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum. Inf. Process. 15(2), 929–945 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Loock, P.V., Weedbrook, C., Gu, M.: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76 (7), 3009–3014 (2007)

    Google Scholar 

  26. Yang, W.W., He, Y.L., Huang, J., et al.: Numerical simulation of heat transfer enhancement in porous medium filled pipe. J. Eng. Thermophys. 28(1), 104–106 (2007)

    Google Scholar 

  27. Xiang, S.H., Song, K.H.: Generation of two-atom cluster state via cavity QED. Chin. Phys. Lett. 23(6), 1466–1469 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. Munhoz, P.P., Semiao, F.L., Barranco, V., et al.: Cluster-type entangled coherent states. Phys. Lett. A 372(12), 3580–3585 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(8), 127902 (2004)

    Article  ADS  Google Scholar 

  30. Li, Y.H., Sang, M.H., Nie, Y.Y.: Preparing an eight-qubit entangled state in cavity QED. Int. J. Theor. Phys. 55, 4693–4698 (2016)

    Article  MATH  Google Scholar 

  31. Walther, P., Resch, K.J., Rudolph, T., et al.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  32. Lu, C.Y., Zhou, X.Q., Pan, W.J., et al.: Experimental entanglement of six photos in graph state. Nature 3, 91–95 (2007)

    Google Scholar 

  33. Nie, Y.Y., Li, Y.H., Jin, C.P., et al.: Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state. Int. J. Theor. Phys. 50, 297–305 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61301171 and Grant No. 61372076), the Fundamental Research Funds for the Central Universities (JB No.160115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Li, M., Chen, N. et al. Quantum Teleportation of Eight-Qubit State via Six-Qubit Cluster State. Int J Theor Phys 57, 516–522 (2018). https://doi.org/10.1007/s10773-017-3583-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3583-4

Keywords

Navigation