International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 516–522 | Cite as

Quantum Teleportation of Eight-Qubit State via Six-Qubit Cluster State

  • Nan Zhao
  • Min Li
  • Nan Chen
  • Chang-hua Zhu
  • Chang-xing Pei
Article
  • 91 Downloads

Abstract

A novel quantum teleportation protocol for certain class of eight-qubit state is proposed. We utilize a six-qubit cluster state as quantum channel. In our scheme, the sender performs four controlled-NOT operations and a six-qubit von-Neumann projective measurement, the original state with deterministic probability can be reconstructed by the receiver. Higher efficiency can be achieved based on our results.

Keywords

Quantum teleportation Cluster state Eight-qubit state 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61301171 and Grant No. 61372076), the Fundamental Research Funds for the Central Universities (JB No.160115).

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 94–98 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics 8, 770–774 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516–519 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 22338–22345 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Li, K., Kong, F.Z., Yang, M., Fatih, O., Yang, Q., Cao, Z.L.: Generating multi-photon W-like states for perfect quantum teleportation and superdense coding. Quantum Inf. Process. 15, 3137–3150 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W-states. Phys. Rev. A 74(6), 180–180 (2006)CrossRefGoogle Scholar
  7. 7.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pati, A.K.: Assisted cloning and orthogonal complementing of an unknown state. Phys. Rev. A 61, 022308 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Shima, H., Monireh, H.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process 15, 905–912 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Wang, L.Q., Zha, X.W.: Two schemes of teleportation one-particle state by a three-particle GHZ state. Opt. Commun. 283, 4118 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Pakhshan, E., Pouria, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Int. J. Theor. Phys. 13, 1789–1811 (2014)MathSciNetMATHGoogle Scholar
  12. 12.
    Jung, E., Hwang, M.R., Ju, Y.H., Kim, M.S., Yoo, S.K., Kim, H., Park, D.K., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78(1), 3332–3335 (2008)CrossRefGoogle Scholar
  13. 13.
    Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48(2), 516–521 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Tsai, C.W., Hwang, T.: Teleportation of a pure EPR state via GHZ-like state. Int. J. Theor. Phys. 49, 1969–1975 (2010)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-Like state. Int. J. Theor. Phys. 53, 1322–1324 (2013)CrossRefMATHGoogle Scholar
  16. 16.
    Zhu, H.P.: Perfect Teleportation of an arbitrary two-qubit state via GHZ-Like states. Int. J. Theor. Phys. 53, 4095–4097 (2014)CrossRefMATHGoogle Scholar
  17. 17.
    Choudhury, B S, Dhara, A: A probabilistic quantum communication protocol using mixed entangled channel. Phys. Part. Nuclei 13(3), 336–341 (2016)CrossRefGoogle Scholar
  18. 18.
    Brigel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Li, D.C., Cao, Z.L.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47(3), 464–466 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Dong, P., Xue, Z.Y., Yang, M., Cao, Z.L.: Generation of cluster states. Phys. Rev. A 73, 1–6 (2006)Google Scholar
  21. 21.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820–1823 (2016)CrossRefMATHGoogle Scholar
  22. 22.
    Tan, X.Q., Zhang, X.Q., Fang, J.B.: Perfect quantum teleportation by four-particle cluster state. Inform. Process. Lett. 116, 347–350 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Sang, M.H.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55(3), 1333–1335 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum. Inf. Process. 15(2), 929–945 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Loock, P.V., Weedbrook, C., Gu, M.: Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76 (7), 3009–3014 (2007)Google Scholar
  26. 26.
    Yang, W.W., He, Y.L., Huang, J., et al.: Numerical simulation of heat transfer enhancement in porous medium filled pipe. J. Eng. Thermophys. 28(1), 104–106 (2007)Google Scholar
  27. 27.
    Xiang, S.H., Song, K.H.: Generation of two-atom cluster state via cavity QED. Chin. Phys. Lett. 23(6), 1466–1469 (2006)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Munhoz, P.P., Semiao, F.L., Barranco, V., et al.: Cluster-type entangled coherent states. Phys. Lett. A 372(12), 3580–3585 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92(8), 127902 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Li, Y.H., Sang, M.H., Nie, Y.Y.: Preparing an eight-qubit entangled state in cavity QED. Int. J. Theor. Phys. 55, 4693–4698 (2016)CrossRefMATHGoogle Scholar
  31. 31.
    Walther, P., Resch, K.J., Rudolph, T., et al.: Experimental one-way quantum computing. Nature 434, 169–176 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Lu, C.Y., Zhou, X.Q., Pan, W.J., et al.: Experimental entanglement of six photos in graph state. Nature 3, 91–95 (2007)Google Scholar
  33. 33.
    Nie, Y.Y., Li, Y.H., Jin, C.P., et al.: Quantum information splitting of an arbitrary multi-qubit GHZ-type state by using a four-qubit cluster state. Int. J. Theor. Phys. 50, 297–305 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Nan Zhao
    • 1
  • Min Li
    • 1
  • Nan Chen
    • 1
  • Chang-hua Zhu
    • 1
  • Chang-xing Pei
    • 1
  1. 1.State Key Laboratory of Integrated Services NetworksXidian UniversityXi’anChina

Personalised recommendations