International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 476–494 | Cite as

Exploring the Implementation of Steganography Protocols on Quantum Audio Signals

  • Kehan Chen
  • Fei Yan
  • Abdullah M. Iliyasu
  • Jianping Zhao
Article
  • 47 Downloads

Abstract

Two quantum audio steganography (QAS) protocols are proposed, each of which manipulates or modifies the least significant qubit (LSQb) of the host quantum audio signal that is encoded as an FRQA (flexible representation of quantum audio) audio content. The first protocol (i.e. the conventional LSQb QAS protocol or simply the cLSQ stego protocol) is built on the exchanges between qubits encoding the quantum audio message and the LSQb of the amplitude information in the host quantum audio samples. In the second protocol, the embedding procedure to realize it implants information from a quantum audio message deep into the constraint-imposed most significant qubit (MSQb) of the host quantum audio samples, we refer to it as the pseudo MSQb QAS protocol or simply the pMSQ stego protocol. The cLSQ stego protocol is designed to guarantee high imperceptibility between the host quantum audio and its stego version, whereas the pMSQ stego protocol ensures that the resulting stego quantum audio signal is better immune to illicit tampering and copyright violations (a.k.a. robustness). Built on the circuit model of quantum computation, the circuit networks to execute the embedding and extraction algorithms of both QAS protocols are determined and simulation-based experiments are conducted to demonstrate their implementation. Outcomes attest that both protocols offer promising trade-offs in terms of imperceptibility and robustness.

Keywords

Quantum computation Quantum information Quantum audio Audio steganography Least significant qubit 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 61502053), the Science & Technology Development Program of Jilin Province, China (No. 20170520065JH), and it is sponsored by the Prince Sattam Bin Abdulaziz University, Saudi Arabia via the Deanship for Scientific Research funding granted to the CIIS Research Group project number 2016/01/6441.

References

  1. 1.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6-7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shor, P.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  3. 3.
    Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lndn. A 400, 97–117 (1985)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Yan, F., Iliyasu, A., Venegas-Andraca, S.: A survey of quantum image representations. Quantum Inf. Process 15(1), 1–35 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Yan, F, Iliyasu, A., Le, P.: Quantum image processing: A review of advances in its security technologies. Int. J. Quant. Inf. 15(3), 1730001 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Iliyasu, A., Le, P., Dong, F., Hirota, K.: A framework for representing and producing movies on quantum computers. Int. J. Quant. Inf. 9(6), 1459–1497 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Wang, J.: Qrda: Quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2016)CrossRefMATHGoogle Scholar
  9. 9.
    Yan, F., Guo, Y., Iliyasu, A., Yang, H: Flexible representation and manipulation of audio signals on quantum computers. arXiv:1701.01291 (2017)
  10. 10.
    Wang, S., Sang, J., Song, X., Niu, X.: Least significant qubit (lsqb) information hiding algorithm for quantum images. Measurement 73, 352–359 (2015)CrossRefGoogle Scholar
  11. 11.
    Nosrati, M., Karimi, R., Hariri, M.: Audio steganography: A survey on recent approaches. World Appl. Program. 2(3), 202–205 (2012)Google Scholar
  12. 12.
    Jiang, N., Zhao, N., Wang, L.: Lsb based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefMATHGoogle Scholar
  13. 13.
    Cvejic, N, Seppanen, T.: Increasing robustness of lsb audio steganography using a novel embedding method. In: International conference on information technology: coding and computing, pp. 533–537 (2004)Google Scholar
  14. 14.
    Iliyasu, A., Yan, F., Hirota, K.: Metric for estimating congruity between quantum images. Entropy 18(10), 360 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    Iliyasu, A., Venegas-Andraca, S., Yan, F., Sayed, A.: Hybrid quantum-classical protocol for storage and retrieval of discrete-valued information. Entropy 16(6), 3537–3551 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Le, P., Iliyasu, A., Dong, F., Hirota, K.: A flexible representation and invertible transformations for images on quantum computers. Adv. Intell. Signal Process. Stud. Comput. Intell. 372, 179–202 (2011)Google Scholar
  17. 17.
    Yan, F., Iliyasu, A., Sun, B., Venegas-Andraca, S., Dong, F., Hirota, K.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process 14(5), 1675–1692 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Iliyasu, A., Le, P., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Iliyasu, A., Le, P., Yan, F., Sun, B., Garcia, J., Dong, F., Hirota, K.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)CrossRefGoogle Scholar
  20. 20.
    Yan, F., Iliyasu, A., Venegas-Andraca, S., Yang, H.: Video encryption and decryption on quantum computers. Int. J. Theor. Phys. 54(8), 2893–2904 (2015)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Yuan, S., Mao, X., Zhou, J., Wang, X.: Quantum image filtering in the spatial domain. Int. J. Theor. Phys. 56(8), 2495–2511 (2017)CrossRefGoogle Scholar
  22. 22.
    Yan, F., Guo, Y., Iliyasu, A., Jiang, Z., Yang, H.: Multi-channel quantum image scrambling. J. Adv. Comput. Intell. Intell. Inf. 20(1), 163–170 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Computer Science and TechnologyChangchun University of Science and TechnologyChangchunChina
  2. 2.College of EngineeringPrince Sattam Bin Abdulaziz UniversityAl-KharjKingdom of Saudi Arabia

Personalised recommendations