Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 443–452 | Cite as

Schemes for Hybrid Bidirectional Controlled Quantum Communication via Multi-qubit Entangled States

  • Peng-Cheng Ma
  • Gui-Bin Chen
  • Xiao-Wei Li
  • You-Bang Zhan
Article
  • 112 Downloads

Abstract

We present two schemes for hybrid bidirectional controlled quantum communication (HBCQC) via six- and nine-qubit entangled states as the quantum channel, respectively. In these schemes, two distant parties, Alice and Bob are not only senders but also receivers, and Alice wants to teleport an unknown single-qubit state to Bob, at the same time, Bob wishes to help Alice remotely prepares an arbitrary single- and two- qubit state, respectively. It is shown that, only if the two senders and the controller collaborate with each other, the HBCQC can be completed successfully. We demonstrate, in our both schemes, the total success probability of the HBCQC can reach 1, that is, the schemes are deterministic.

Keywords

Hybrid bidirectional controlled quantum communication Teleportation Remote state preparation Six- and nine- qubit entangled states Unit successful probability 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11547023, No.51605338).

References

  1. 1.
    Nielsen, M.A., Chuang, I.J.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  2. 2.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865–942 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Zha, X.W., Zhou, Z.C., Qi, J.X., Song, H.Y.: Int. J. Theor. Phys. 52, 1740–4 (2013)CrossRefGoogle Scholar
  5. 5.
    Li, Y.H., Nie, L.P.: Int. J. Theor. Phys. 52, 1630–4 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Yan, A.: Int. J. Theor. Phys. 52, 3870–73 (2013)CrossRefGoogle Scholar
  7. 7.
    Shukla, C., Banerjee, A., Pathak, A.: Int. J. Theor. Phys. 52, 3790–6 (2013)CrossRefGoogle Scholar
  8. 8.
    Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Int. J. Theor. Phys. 53, 2697–707 (2014)CrossRefGoogle Scholar
  9. 9.
    Duan, Y.J., Zha, X.W.: Int. J. Theor. Phys. 53, 3780–6 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.: Int. J. Theor. Phys. 54, 269–72 (2015)CrossRefGoogle Scholar
  11. 11.
    Sang, M.H.: Int. J. Theor. Phys. 55, 380–3 (2016)CrossRefGoogle Scholar
  12. 12.
    Sang, M.H.: Int. J. Theor. Phys. 55, 1333–5 (2016)CrossRefGoogle Scholar
  13. 13.
    Choudhury, B.S., Dhara, A.: Int. J. Theor. Phys. 55, 2272–85 (2016)Google Scholar
  14. 14.
    Zhang, D., Zha, X.W., Duan, Y.J.: Int. J. Theor. Phys. 54, 1711–19 (2015)CrossRefGoogle Scholar
  15. 15.
    Zhang, D., Zha, X.W., Li, W., Yu, Y.: Quantum Inf. Process. 14, 3835–44 (2015)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Hong, W.Q.: Int. J. Theor. Phys. 55, 384–7 (2016)CrossRefGoogle Scholar
  17. 17.
    Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Int. J. Theor. Phys. 55, 3008–16 (2016)CrossRefGoogle Scholar
  18. 18.
    Yang, Y.Q., Zha, X.W., Yan, Y.: Int. J. Theor. Phys. 55, 4197–204 (2016)CrossRefGoogle Scholar
  19. 19.
    Nie, Y.Y., Sang, M.H.: Int. J. Theor. Phys. 55, 4759–65 (2016)CrossRefGoogle Scholar
  20. 20.
    Lo, K.H.: Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    Pati, A.K.: Phys. Rev. A 63, 014302 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Phys. Rev. Lett. 87, 077902 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Devetak, I., Berger, T.: Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    Zeng, B., Zhang, P.: Phys. Rev. A 65, 022316 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Berry, D.W., Sanders, B.C.: Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    Abeyesinghe, A., Hayden, P.: Phys. Rev. A 68, 062319 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Leung, D.W., Shor, P.W.: Phys. Rev. Lett. 90, 127905 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Paris, M.G.A., Cola, M., Bonifacio, R.: J. Opt. B: Quantum Semiclass. Opt. 5, S360 (2002)CrossRefGoogle Scholar
  29. 29.
    Hayashi, A., Hashimoto, T., Horibe, M.: Phys. Rev. A 67, 052302 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Ye, M.Y., Zhang, Y.S., Guo, G.C.: Phys. Rev. A 69, 022310 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Phys. Rev. A 72, 052315 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Liu, J.M., Feng, X.L., Oh, C.H.: EPL 87, 30006 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Ma, P.C., Zhan, Y.B.: Opt.Commun. 283, 2640–44 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: J. Phys. B: At. Mol. Opt. Phys. 43, 065501 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Phys. Rev. A 81, 042301 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Phys. Lett. A 374, 4483–87 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Zhan, Y.B.: EPL 98, 40005 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Int. J. Theor. Phys. 52, 2615–22 (2013)CrossRefGoogle Scholar
  39. 39.
    Dai, H.Y., Zhang, M., Zhang, Z.R., Xi, Z.R.: Commun.Theor. Phys. 60, 313–22 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Phys. Lett. A 306, 271–6 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    Babichev, S.A., Brezger, B., Lvovsky, A.I.: Phys. Rev. Lett. 92, 047903 (2004)ADSCrossRefGoogle Scholar
  42. 42.
    Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Phys. Rev. A 72, 012315 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Phys. Rev. Lett. 94, 150502 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Phys. Rev.Lett. 98, 050504 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    Cao, T.B., Ngoyen, B.A.: Adv. Nat. Sci Nanosci. Nanotechnol. 5, 015003 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Bich, C.T.: Int. J. Theor. Phys. 54, 139–52 (2015)CrossRefGoogle Scholar
  47. 47.
    Peng, J.Y., Bai, M.Q., Mo, Z.W.: Quantum Inf. Process 14, 4263–78 (2015)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Zhang, D., Zha, X.W., Duan, Y.J., Wei, Z.H.: Int. J. Theor. Phys. 55, 440–6 (2016)CrossRefGoogle Scholar
  49. 49.
    Lu, Q.C., Liu, D.P., He, Y.H., Liao, Y.Mi., Qin, X.C., Qin, J.S., Zhou, P.: Int. J. Theor. Phys. 55, 535–47 (2016)CrossRefGoogle Scholar
  50. 50.
    Zhang, D., Zha, X.W., Duan, Y.J., Yang, Y.Q.: Quantum Inf. Process 15, 2169–79 (2016)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Huang, Z.H.: Int. J. Theor. Phys. 54, 3438–41 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Peng-Cheng Ma
    • 1
  • Gui-Bin Chen
    • 1
  • Xiao-Wei Li
    • 1
    • 2
  • You-Bang Zhan
    • 1
  1. 1.School of Physics and Electronic Electrical Engineering & Jiangsu Key Laboratory for Chemistry of Low-Dimensional MaterialsHuaiyin Normal UniversityHuaianPeople’s Republic of China
  2. 2.State Key Laboratory of Functional Materials for InformaticsShanghai Institute of Microsystem and Information Technology, Chinese Academy of SciencesShanghaiChina

Personalised recommendations