International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 428–442 | Cite as

Quantum-Secret-Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States

  • Cheng-Ji Liu
  • Zhi-Hui Li
  • Chen-Ming Bai
  • Meng-Meng Si


The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a (k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.


Quantum secret sharing Local distinguishability Judgment space Entangled state 



This work was sponsored by the National Natural Science Foundation of China under Grant No.61373150 and No.61602291, Industrial Research and Development Project of Science and Technology of Shaanxi Province under Grant No.2013k0611, and supported by “the Fundamental Research Funds for the Central Universities” under Grant No.GK201603087.


  1. 1.
    Bennett, C.H., Brassard, G.: In: IEEE Int. Conf. Comput., pp. 175–179. Bangalore (1984)Google Scholar
  2. 2.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Gheorghiu, V., Sanders, B.C.: Accessing quantum secrets via local operations and classical communication. Phys. Rev. A 88, 022340 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf. Process. 16(3), 59 (2017)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: A generalized information theoretical model for quantum secret sharing. Int. J. Theor. Phys. 55(11), 4972–4986 (2016)CrossRefMATHGoogle Scholar
  11. 11.
    Pilaram, H., Eghlidos, T.: An efficient lattice based multi-stage secret sharing scheme. IEEE Trans. Depend. Secure Comput. 14, 2 (2017)Google Scholar
  12. 12.
    Tavakoli, A., Herbauts, I., Zukowski, M., Bourennane, M.: Secret sharing with a single d-level quantum system. Phys. Rev. A 92(R), 030302 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: Using single states instead of entanglement. Phys. Rev. A 92(R), 030301 (2015)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Arpita, M., Goutam, P.: A resilient quantum secret sharing scheme. Int. J. Theor. Phys. 54(2), 39,8–408 (2015)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Giovanni, D.C., Clemente, G.: Hypergraph decomposition and secret sharing. Discret. Appl. Math. 157(5), 928–946 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE Trans. Inf. Theor. 58, 6659 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Xu, T.T., Li, Z.H., Ma, M.: A new improvable quantum secret sharing scheme. J. Shandong University 52(3), 8–15 (2017)Google Scholar
  18. 18.
    Xu, T.T., Li, Z.H., Bai, C.M., Ma, M.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56, 1–10 (2017)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Wang, Q.H., Zhu, X.H., Dai, Y.W.: (k,n) threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process 14(8), 2997–3004 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Wang, Q.H., Zhu, X.H., Dai, Y.W.: Verifiable (k,n) threshold quantum secret sharing using d-dimensional Bell state. Inf. Process. Lett. 116(5), 351–355 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Yang, Y.H., Gao, F., Wu, X., Qin, S.J., Zuo, H.J., Wen, Q.Y.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Wang, J.T., Li, L.X., Peng, H.P., Yang, Y.X.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. A 65, 032302 (2002)ADSGoogle Scholar
  25. 25.
    Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Deng, F., Li, X., Zhou, H., Zhang, Z.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)ADSCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceShannxi Normal UniversityXi’anChina

Personalised recommendations