International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 388–405 | Cite as

New Physical Mechanism for Lightning

Article
  • 71 Downloads

Abstract

The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.

Keywords

Thunderstorm activity Lightning channel Metallic bonds Phase transitions Resonance-percolation trajectory 

References

  1. 1.
    Wilson, C.T.: Investigations on lightning discharges and on the electric field of thunderstorms. Philos. Trans. Roy. Soc. Lond. A. 221, 73–115 (1920)ADSCrossRefGoogle Scholar
  2. 2.
    Mareev, E.A.: Global electric circuit research: achievements and prospects. Phys. Usp. 53, 504–511 (2010).  https://doi.org/10.3367/UFNe.0180.201005h.0527 ADSCrossRefGoogle Scholar
  3. 3.
    Harrison, R.G.: The carnegie curve. Surv. Geophys. 34, 209–232 (2013)ADSCrossRefGoogle Scholar
  4. 4.
    Muchnik, V.M.: Fizika Grozy (Physics of Thunderstorm). Gidrometeoizdat, Leningrad (1974)Google Scholar
  5. 5.
    Elster, J., Geitel, H.: Zur Influenztheorie der Nieder- schlagselektrizität. Phys. Z. 14, 1287–1292 (1913)Google Scholar
  6. 6.
    Wilson, C.T.R.: Some thundercloud problems. J. Franklin Inst. 208, 1–12 (1929)CrossRefGoogle Scholar
  7. 7.
    Grenet, G.: Essai d’explication de la charge electrique des nuages d’orages. Ann. Geophys. 3, 306–307 (1947)Google Scholar
  8. 8.
    Vonnegut, B.: Possible mechanism for the formation of thunderstorm electricity. In: Geophysical Research Paper No. 42. Proceeding of the Conference on Atmos. Electricity AFCRC-TR-55-222, pp 169–181 (1955)Google Scholar
  9. 9.
    Chalmers, J.A.: Atmospheric Electricity. Pergamon Press, New York (1967)Google Scholar
  10. 10.
    Avila, E.E., Longo, G.S., Burgesser, R.E.: Mechanism for electric charge separation by ejection of charged particles from an ice particle growing by riming. Atmos. Res. 69, 99–108 (2003)CrossRefGoogle Scholar
  11. 11.
    Mason, J., Mason, N.: The physics of a thunderstorm. Eur. J. Phys. 24, S99–S110 (2003)ADSCrossRefMATHGoogle Scholar
  12. 12.
    Handel, P.H.: Polarization catastrophe theory of cloud electricity - speculation of a new mechanism for thunderstorm electrification. J. Geoph. Res.: Atmos. 90(D3), 5857–5863 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    Bazelyan, E.M., Raizer J.P.: Fizika Molnii I Molniezaschity (Physics of Lightning and Lightning Protection). Fizmatlit, Moscow (2001)Google Scholar
  14. 14.
    Rakov, V.A., Uman, M.A.: Lightning: Physics and Effects. Cambridge University Press, New York (2003)CrossRefGoogle Scholar
  15. 15.
    Iudin, D.I., Trakhtengerts, V.: Fractal dynamics of electric charges in a thunderstorm cloud. Izv. Atmos. Oceanic Phys. 36, 597–608 (2000)Google Scholar
  16. 16.
    Iudin, D.I., Trakhtengertz, V.Y., Hayakawa, M.: Fractal dynamics of electric discharges in a thundercloud. Phys. Rev. E. 68, 016601 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Iudin, D.I., Trakhtengertz, V.: Sprites, elves and intense lightning discharges. NATO Science Series Springer 225, 341–376 (2006)Google Scholar
  18. 18.
    Lowke, J.J.: The initiation of lightning in thunderclouds: the possible influence of metastable nitrogen and oxygen molecules in initiating lightning streamers. J. Geophys. Res. Atmos. 120, 3183–3190 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    Carlson, B.E., Liang, C., Bitzer, P., Christian, H.: Time domain simulations of preliminary breakdown pulses in natural lightning. J. Geophys. Res. Atmos. 120, 5316–5333 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Artekha, S N., Belyan, A.V.: On the role of electromagnetic phenomena in some atmospheric processes. Nonlinear Process. Geophys. 20, 293–304 (2013).  https://doi.org/10.5194/npg-20-293-2013 ADSCrossRefGoogle Scholar
  21. 21.
    Artekha, S.N., Belyan, A.V., Erokhin, N.S.: Manifestations of electromagnetic phenomena in atmospheric processes. Sovr. Probl. DZZ Kosm. 10(2), 225–233 (2013)Google Scholar
  22. 22.
    Arteha, S.N., Belyan, A.V., Erokhin, N.S.: Electromagnetic phenomena in atmospheric plasma-like subsystems. Problems of Atomic Science and Technology 4 (86), 115–120 (2013)Google Scholar
  23. 23.
    Marshall, T.C., Stolzenburg, M., Maggio, C.R., Coleman, L.M., Krehbiel, P.R., Hamlin, T., Thomas, R.J., Rison, W.: Observed electric fields associated with lightning initiation. Geophys. Res. Lett. 32, L03813 (2005)ADSGoogle Scholar
  24. 24.
    Gurevich, A.V., Milikh, G.M., Roussel-Dupre, R.: Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm. Phys. Lett. A 165(5-6), 463–468 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    Gurevich, A.V., Zybin, K.P.: Runaway breakdown and electric discharges in thunderstorms. Phys. Usp. 44, 1119–1140 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Gurevich, A.V., Karashtin, A.N., Ryabov, V.A., Chubenko, A.P., Shchepetov, S.V.: Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges. Phys. Usp. 52, 735–745 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Lifshitz, I.M., Kirpichenkov, V.Y.: Tunnel transparency of disordered systems. JETP 50(3), 499–511 (1979)ADSGoogle Scholar
  28. 28.
    Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)Google Scholar
  29. 29.
    Artekha, S.N., Belyan, A.: On a possible mechanism for lightning flashes. In: Proceedings of the International Conference MSS-14 “Mode Conversion Coherent Structures and Turbulence”, pp 58–63. LENAND, Moscow (2014)Google Scholar
  30. 30.
    Zaitsev, R.O., Kuz’min, E.V., Ovchinnikov, S.G.: Fundamental ideas on metal-dielectric transitions in 3d-metal compounds. Physics - Uspekhi 29, 322–342 (1986)CrossRefGoogle Scholar
  31. 31.
    Hartree, D.R.: The wave mechanics of an atom with a non-coulomb central field. Part I. theory and methods. Math. Proc. Camb. Philos. Soc. 24, 89–110 (1928).  https://doi.org/10.1017/S0305004100011919 ADSCrossRefMATHGoogle Scholar
  32. 32.
    Likal’ter, A.A.: Gaseous metals. Physics - Uspekhi 35(7), 591–605 (1992)CrossRefGoogle Scholar
  33. 33.
    Artekha, S.N., Moiseev, S.S.: Transmission of randomly nonuniform barriers and certain physical consequences. Technical Phys. 38, 265–271 (1993)ADSGoogle Scholar
  34. 34.
    Kittel, C.: Introduction to Solid State Physics. Wiley, New York (1971)MATHGoogle Scholar
  35. 35.
    Ashcroft, N.Q.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)MATHGoogle Scholar
  36. 36.
    Denisenko, M.V., Derbenko, A.S., Kashin, S.M., Satanin, A.M.: Calculation of the Bloch functions of an electron in a one-dimensional periodic potential. NNSU, Nizhny Novgorod (2010)Google Scholar
  37. 37.
    Nakano, T.: Direct interaction approximation of turbulence in the wave packet representation. Phys. Fluids. 31(6), 1420–1430 (1988)ADSCrossRefMATHGoogle Scholar
  38. 38.
    Thomas, H., Morfill, G.E., Demmel, V., Goree, J., Feuerbacher, B., Möhlmann, D.: Plasma crystal: coulomb crystallization in a dusty plasma. Phys. Rev. Lett. 73(5), 652–655 (1994)ADSCrossRefGoogle Scholar
  39. 39.
    Chu, J., Lin, I.: Coulomb lattice in a weakly ionized colloidal plasma. Physica A. 205(1-3), 183–190 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    Tsytovich, V.N.: Dust plasma crystals, drops, and clouds. Phys. Usp. 40, 53–94 (1997).  https://doi.org/10.1070/PU1997v040n01ABEH000201 ADSCrossRefGoogle Scholar
  41. 41.
    Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., Petrov, O.F.: Dusty plasmas. Phys. Usp. 47, 447–492 (2004).  https://doi.org/10.1070/PU2004v047n05ABEH001689 ADSCrossRefGoogle Scholar
  42. 42.
    Morfill, G.E., Ivlev, A.V.: Complex plasmas: an interdisciplinary research field. Rev. Mod. Phys. 81, 1353–1404 (2009).  https://doi.org/10.1103/RevModPhys.81.1353 ADSCrossRefGoogle Scholar
  43. 43.
    Iudin, D.I., Iudin, F.D., Hayakawa, M.: Modeling of the intracloud lightning discharge radio emission. Radiophys. Quantum Electron. 58(3), 173–184 (2015)ADSCrossRefGoogle Scholar
  44. 44.
    Saunders, C.P.R., Rimmer, J.S.: The electric field alignment of ice crystals in thunderstorms. Atmos. Res. 51, 337–343 (1999)CrossRefGoogle Scholar
  45. 45.
    Foster, T.C., Hallet, J.: The alignment of ice crystals in changing electric fields. Atmos. Res. 62, 149–169 (2002)CrossRefGoogle Scholar
  46. 46.
    Vysotskii, V.I., Vysotskyy, M.V., Adamenko, S.V.: Formation and application of correlated states in nonstationary systems at low energies of interacting particles. J. Exp. Theor. Phys. 114(2), 243–252 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Vysotskii, V.I., Vysotskyy, M.V.: Correlated states and transparency of a barrier for low-energy particles at monotonic deformation of a potential well with dissipation and a stochastic force. J. Exp. Theor. Phys. 118(4), 534–549 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Space Research Institute of RASMoscowRussia

Personalised recommendations