Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 371–380 | Cite as

Secure Quantum Dialogue Protocol Based On Four-Qubit Cluster State

Article
  • 125 Downloads

Abstract

In this paper, a quantum dialogue protocol is proposed based on four-qubit Cluster state, which constructed a new quantum channel. By using Bell measurements and the corresponding unitary operation, two users can exchange their messages simultaneously and directly. And two security cheques are adopted to ensure its transmission security against the several well-known attacks from an outside eavesdropper. The protocol can avoid the information leakage, and it is simple and feasible with current technique.

Keywords

Quantum dialogue Four-qubit cluster state Bell measurement Information leakage 

Notes

Acknowledgements

This work was supported by the foundation of Shannxi provincial Educational Department under Contract No. 15JK1668. This work was supported by the Natural Science Foundation of Shannxi provincial of China Grant No. 2015JM6263 and No. 2013JM1009.

References

  1. 1.
    Zhu, D., Yang, Y.H., Zhang, D., Liu, R.Z., Ma, D.M., Li, C.B., Zhang, Y.P.: Multi-mode of four and six wave parametric amplified process. Sci. Rep. 7, 43689 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    Li, C.B., Jiang, Z.H., Zhang, Y.Q., Zhang, Z.Y., Wen, F., Chen, H.X., Zhang, Y.P., Xiao, M.: Controlled correlation and squeezing in P r 3+ : Y 2 S i O 5 to yield correlated light beams. Phys. Rev. Appl. 7, 014023 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    Feng, W., Li, Z., Zhang, Y., Hong, G., Che, J., et al.: Triple-mode squeezing with dressed six-wave mixing. Sci. Rep. 6, 25554 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Abdisa, G., Ahmed, I., Wang, X.X., Liu, Z.C., Wang, H.G., Zhang, Y.P.: Controllable hybrid shape of correlation and squeezing. Phys. Rev. A 94, 023849 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dualclassical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ai, Q.: Toward quantum teleporting living objects. Sci. Bull. 61, 110–111 (2016)CrossRefGoogle Scholar
  7. 7.
    Li, T.C., Yin, Z.Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci.Bull. 61, 163–171 (2016)CrossRefGoogle Scholar
  8. 8.
    Long, G.L., Liu, X.S. : arXiv:quant-ph/0012056V1 (2000)
  9. 9.
    Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Deng, . F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Sci. Appl. 5, 16144 (2016)Google Scholar
  14. 14.
    Wang, C. et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Wang, C. et al.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15–20 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Li, X.H. et al.: Quantum secure direct communication with quantumencryption based on pure entangled states. Chin. Phys. 16, 2149–2153 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Gu, B. et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China: Phys. Mech. Astron. 54, 942–947 (2011)ADSGoogle Scholar
  19. 19.
    Gu, B. et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831 (2011)ADSCrossRefMATHGoogle Scholar
  21. 21.
    Wu, Y.H., Zhai, W.D., Cao, W.Z., Li, C.: Quantum secure direct communication by using general entangled states. Int. J. Theor. Phys. 50, 325–331 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gao, G., Fang, M., Yang, R.M.: Quantum secure direct communication by swapping entanglements of 3 × 3-dimensional bell states. Int. J. Theor. Phys. 50, 882–887 (2011)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)CrossRefMATHGoogle Scholar
  24. 24.
    Sun, Z.W., Du, R.G., Long, D.Y.: Quantum secure direct communication with two-photon four-qubit cluster states. Int. J. Theor. Phys. 51, 1946–1952 (2012)CrossRefMATHGoogle Scholar
  25. 25.
    Ren, B.C. et al.: Photonic spatial Bell-state analysis for robust quantum securedirect communication using quantum dot-cavity systems. Eur. Phys. J. D 67, 30 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    Gu, B. et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52, 4461–4469 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52, 22–27 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bullet. 58, 4571–4576 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. Chin. Phys. Mech. Astron. 57, 1696–1702 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Proc. 13, 2731 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Li, Y.B., Song, T.T., Huang, W., Zhan, W.W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54, 589 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. J. Phys. A: Math. Gen. 39, 14089 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  37. 37.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Qin, H.W., Dai, Y.W.: Proactive quantum secret sharing. Quantum Inf. Proc. 14, 4237 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Qin, H.W., Zhu, X.H., Dai, Y.W.: (t,n)Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Proc. 15, 2997 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems and signal Processing, pp 175–179. IEEE, New York (1984)Google Scholar
  41. 41.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    Pinheiro, P.V.P., Ramos, R.V.: Two-layer quantum key distribution. Quantum Inf. Proc. 14, 2111 (2015)ADSCrossRefMATHGoogle Scholar
  51. 51.
    Zhang, C.M., Li, M., Yin, Z.Q, et al.: Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics. Sci. China-Phys. Mech. Astron. 58, 590301 (2015)CrossRefGoogle Scholar
  52. 52.
    Bai, Z.L., Wang, X.Y., Yang, S.S., Li, Y.M.: High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution. Sci. China Phys. Phys. Mech. Astron. 59(1), 614201 (2016)CrossRefGoogle Scholar
  53. 53.
    Cao, D.-Y., Liu, B.-H., Wang, Z., et al.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bullet. 60(12), 1128 (2015)CrossRefGoogle Scholar
  54. 54.
    Lu, X.M., Zhang, L.J., Wang Y.G., et al.: FPGA based digital phase-coding quantum key distribution system. Sci. China Phys. Mech. Astron. 58(12), 120301 (2015)CrossRefGoogle Scholar
  55. 55.
    Huang, W., Su, Q., Xu, B.J., et al.: Improved multiparty quantum key agreement in travelling mode. Sci. China Phys. Mech. Astron. 59(12), 120311 (2016)CrossRefGoogle Scholar
  56. 56.
    Zhang, Z.J., Man, Z.X.: arXiv:quant-ph/0403215v1 (2004)
  57. 57.
    Zhang, Z.J., Man, Z.X.: arXiv:quant-ph/0403217v4 (2004)
  58. 58.
    Nguyen, B.A., et al.: Quantum dialogue. Phys. Lett. A 328(1), 6 (2004)ADSMathSciNetCrossRefMATHGoogle Scholar
  59. 59.
    Man, Z.X., Zhang, Z.J., Li, Y.: Quantum dialogue revisited. Chin. Phys. Lett. 22(1), 22–24 (2005)ADSCrossRefGoogle Scholar
  60. 60.
    Ji, X., Zhang, S., et al.: Secure quantum dialogue based on single-photon. Chin. Phys. 15(7), 1418–1420 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Jin, X.R., Ji, X., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1C2), 67–70 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Man, Z.X., Xia, Y.J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B: Atomic Mol. Phys. 39(18), 3855–3863 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    Man, Z.X., Xia, Y.J., Zhang, Z.J.: Secure deterministic bidirectional communication without entanglement. Int. J. Quant. Inf. 4(4), 739–746 (2006)CrossRefGoogle Scholar
  64. 64.
    Xia, Y., Fu, C.B., et al.: Quantum dialogue by using the GHZ state. J. Kor. Phys. Soc. 48(1), 24–27 (2006)MathSciNetGoogle Scholar
  65. 65.
    Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    Yang, Y.G., Wen, Q.Y.: Quasi-secure quantum dialogue using single photons. Sci. China Series G: Phys. Mech. Astron. 50(5), 558–562 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    Xia, Y., Song, J., Nie, J., Song, H.S.: Controlled secure quantum dialogue using a pure entangled GHZ states. Comm. Theor. Phys. 48(5), 841–846 (2007)ADSCrossRefGoogle Scholar
  68. 68.
    Chen, Y., Man, Z.X., Xia, Y.J.: Quantum bidirectional secure direct communication via entanglement swapping. Chin. Phys. Lett. 24(1), 19–22 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Comment on: Three-party quantum secure direct communication based on GHZ states [Phys. Lett. A 354 (2006) 67]. Phys. Lett. A. 372, 3333 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  71. 71.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication. Sci. China Ser. G-Phys. Mech. Astron. 51, 559 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    Tan, Y.G., Cai, Q.Y.: Classical correlation in quantum dialogue. Int. J. Quant. Inform. 6, 325 (2008)CrossRefGoogle Scholar
  73. 73.
    Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Quantum dialogue protocol using a class of three-photon W states. Commun. Theor. Phys. 52(5), 853–856 (2009)ADSCrossRefMATHGoogle Scholar
  74. 74.
    Huang, D.Z., Chen, Z.G., Xie, J.Q., Guo, Y.: Bidirectional quantum secure direct communication based on entanglement. Commun. Comput. Inf. Sci. 29, 40–49 (2009)Google Scholar
  75. 75.
    Shi, G.F., Xi, X.Q., Tian, X.L., Yue, R.H.: Bidirectional quantum secure communication based on a shared private Bell state. Opt. Commun. 282(12), 2460–2463 (2009)ADSCrossRefGoogle Scholar
  76. 76.
    Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K.: Bidirectional quantum secure direct communication in driven cavity qed. Modern Phys. Lett. B 23(27), 3225–3234 (2009)ADSCrossRefMATHGoogle Scholar
  77. 77.
    Shi, G.F., Xi, X.Q., Hu, M.L., Yue, R.H.: Quantum secure dialogue by using single photons. Opt.Commun. 283(9), 1984–1986 (2010)ADSCrossRefGoogle Scholar
  78. 78.
    Shi, G.F., Tian, X.L.: Quantum secure dialogue based on single photons and controlled-not operations. J. Modern Opt. 57(20), 2027–2030 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    Zhan, Y.B., Zhang, L.L., et al.: Quantum dialogue by using non-symmetric quantum channel. Commun. Theor. Phys. 53(4), 648–652 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  80. 80.
    Liu, H., Zhang, X.L., Lu, H.: Eavesdropping on the quantum dialogue protocol in lossy channel. Chin. Phys. B 20(7), 070305-1-070305-5 (2011)ADSCrossRefGoogle Scholar
  81. 81.
    Sheikhehi, F., Naseri, M.: Probabilistic bidrectional quantum secure communication based on a shared partially entangled states. Int. J. Quant. Inf. 9, 357-365 (2011)CrossRefMATHGoogle Scholar
  82. 82.
    Wang, H., Zhang, Y.Q., Hu, Y.P.: Efficient quantum dialogue by using the two-qutrit entangled states without information leakage. Int. J. Theor. Phys. 52(6), 1745–1750 (2013)CrossRefGoogle Scholar
  83. 83.
    Yang, C.W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quant. Inf. Process. 12(6), 2131–2142 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  84. 84.
    Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scripta. 89(1), 015103-1-015103-7 (2014)ADSCrossRefGoogle Scholar
  85. 85.
    Li, C.Y. et al.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)ADSCrossRefGoogle Scholar
  86. 86.
    Li, C.Y. et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)ADSCrossRefGoogle Scholar
  87. 87.
    Shi, G.F., Xi, X.Q., et al.: Tensor representation in teleportation and controlled teleportation. Opt. Commun. 282, 2460 (2009)ADSCrossRefGoogle Scholar
  88. 88.
    Gao, G., et al.: Cryptanalysis of multiparty quantum secret sharing with collective eavesdropping-check. Opt. Commun. 283, 2288 (2010)ADSCrossRefGoogle Scholar
  89. 89.
    Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30, 040305 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    Ye, T.Y., Jiang, L.Z.: Large payload quantum steganography based on cavity quantum electrodynamics. Chin. Phys. B. 22, 040305 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of ScienceXian University of Posts and TelecommunicationsXianChina

Personalised recommendations