Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 329–338 | Cite as

Teleportation of Three-Particle W State

Article
  • 144 Downloads

Abstract

We present two schemes for teleporting a three-particle W state by using four-particle state. We consider that the quantum channel is a maximally entangled state (four-particle cluster state) or a non-maximally entangled state. In our schemes, it is necessary to introduce additional particle and construct unitary transformation for realize perfect or probabilistic teleportation of the three-particle W state. In order to transmit target state successfully, Alice firstly performs two controlled-NOT on the initial state. The success probabilities of our two schemes are 1 and 4α 2, respectively. Compared with other schemes proposed before, our scheme has higher efficiency.

Keywords

Quantum teleportation Three-particle W state Four-particle state Bell measurement Unitary operation 

Notes

Acknowledgments

The research is supported by National Natural Science Foundation of China, under Grant Nos. 61672014 and 61502200, and Natural Science Foundation of Guangdong Province, China, under Grant Nos. 2016A030313090 and 2014A030310245, and Science and Technology Project of Guangzhou, under Grant No. 201707010253, and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Bennett, C.H., Brassard, G., Crepeau, C.: Teleportation an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel. Phys. Rev. Lett. 70, 1895–1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Nie, Y.Y., Li, Y.H., Wang, X.P., Sang, M.H.: Controlled dense coding using a five-atom cluster state in cavity QED. Quantum Inf. Process 12, 1851–1857 (2013)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 22-27, 52 (2013)MathSciNetMATHGoogle Scholar
  4. 4.
    Ekert, A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 6, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Muralidharan, S., Panigrahi, P.: Quantum information splitting using multi-partite cluster states. Phys. Rev. A 78, 5175–5179 (2008)CrossRefGoogle Scholar
  6. 6.
    Nie, Y.Y., Hong, Z.H., Huang, Y.B.: Non-maximally entangled controlled teleportation using four particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bao, S.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 161-164, 296 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (2005)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Argrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 154–154 (2006)Google Scholar
  11. 11.
    Cao, Z., Yang, M.: Probabilistic teleportation of unknown atomic state using W class states. Physica A 337, 132–140 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Sreraman, M., Prasanta, K.: Perfect teleportation, quantum state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 156–156 (2007)Google Scholar
  14. 14.
    Lu, H.: Probabilistic teleportation of the three-particle entangled state via entanglement swapping. Chin. Phys. Lett. 18, 209–212 (2001)ADSGoogle Scholar
  15. 15.
    Nie, Y.Y., Li, Y.H., Liu, J.C., Sang, M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process 3, 297–305 (2011)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Liu, Z., Zhou, L.: Quantum teleportation of a three-qubit state using a five-qubit cluster state. Int. J. Theor. Phys. 53, 4079–4082 (2014)CrossRefMATHGoogle Scholar
  17. 17.
    Raussendorf, R., Briegel, H.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910C-913 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Xiu, X.M., Li, D., Gao, Y.J., Chi, F.: Quantum teleportation schemes of an N-particle state via three-particle general W states. Commun. Theor. Phys. 49, 905–908 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Zhu, H.P.: Perfect teleportation of an arbitrary two-qubit state via GHZ-like states. Int. J. Theor. Phys. 53, 4095–4097 (2014)CrossRefMATHGoogle Scholar
  21. 21.
    Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Cao, Z.L., Song, W.: Teleportation of a two-particle entangled state via W class states. Physica A 347, 177–183 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    Yuan, H., Liu, Y.M., Zhang, W., Zhang Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B 41(14), 145506 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Information Science and TechnologyJinan UniversityGuangzhouChina

Personalised recommendations