Advertisement

International Journal of Theoretical Physics

, Volume 56, Issue 3, pp 906–915 | Cite as

Non-Markovian Dynamics for a Two-Atom-Coupled System Interacting with Local Reservoir at Finite Temperature

  • Li Jiang
  • Guo-Feng Zhang
Article

Abstract

By using the effective non-Markovian measure (Breuer et al., Phys. Rev. Lett. 103, 210401 2009) we investigate non-Markovian dynamics of a pair of two-level atoms (TLAs) system, each of which interacting with a local reservoir. We show that subsystem dynamics can be controlled by manipulating the coupling between TLAs, temperature and relaxation rate of the atoms. Moreover, the correlation between non-Markovianity of subsystem and entanglement between the subsystem and the structured bath is investigated, the results show that the emergence of non-Markovianity has a negative effect on the entanglement.

Keywords

Non-Markovian Local reservoir Subsystem-structured bath Entanglement 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 11574022 and 11174024) and the Open Project Program of State Key Laboratory of Low-Dimensional Quantum Physics (Tsinghua University) grants Nos. KF201407.

References

  1. 1.
    Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of n-level systems. J. Math. Phys. (N.Y.) 17, 821 (1976)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Breuer, H.P., Petruccione, F.: The theory of open quantum systems, Oxford University Press. Oxford (2007)Google Scholar
  4. 4.
    Chru´sci´nski, D., Kossakowski, A.: Non-Markovian quantum dynamics: local versus nonlocal. Phys. Rev. Lett. 104, 070406 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Jing, J., Yu, T.: Non-Markovian relaxation of a three-level system: quantum trajectory approach. Phys. Rev. Lett. 105, 240403 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Madsen, K.H., Ates, S., Lund-Hansen, T., Löffler, A., Reitzenstein, S., Forchel, A., Lodahl, P.: Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity. Phys. Rev. Lett. 106, 233601 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931 (2011)CrossRefGoogle Scholar
  8. 8.
    Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Huelga, S.F., Rivas, Á., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108, 160402 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Kennes, D. M., Kashuba, O., Pletyukhov, M., Schoeller, H., Meden, V.: Oscillatory dynamics and non-Markovian memory in dissipative quantum systems. Phys. Rev. Lett. 110, 100405 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Tahara, H., Ogawa, Y., Minami, F., Akahane, K., Sasaki, M.: Long-time correlation in non-Markovian dephasing of an exciton-phonon System in InAs quantum dots. Phys. Rev. Lett. 112, 147404 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Cerrillo, J., Cao, J.: Non-Markovian dynamical maps: numerical processing of open quantum trajectories. Phys. Rev. Lett. 112, 110401 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    McCutcheon, D.P.S., Lindner, N.H., Rudolph, T.: Error distributions on large entangled states with non-Markovian dynamics. Phys. Rev. Lett. 113, 260503 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Fischer, R., Vidal, I., Gilboa, D., Correia, R.R.B., Ribeiro-Teixeira, A.C., Prado, S.D., Hickman, J., Silberberg, Y.: Light with tunable non-Markovian phase imprint. Phys. Phys. Rev. Lett. 115, 073901 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Nagy, D., Domokos, P.: Nonequilibrium quantum criticality and non-Markovian environment: critical exponent of a quantum phase transition. Phys. Rev. Lett. 115, 043601 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J. I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Laine, E.-M., Piilo, J., Breuer, H.-P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Vasile, R., Maniscalco, S., Paris, M.G.A., Breuer, H.P., Piilo, J.: Quantifying non-Markovianity of continuous-variable Gaussian dynamical maps. Phys. Rev. A 84, 052118 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Liu, J., Lu, X.-M., Wang, X.: Nonunital non-Markovianity of quantum dynamics. Phys. Rev. A 87, 042103 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Hou, S.C., Liang, S.L., Yi, X.X.: Non-Markovianity and memory effects in quantum open systems. Phys. Rev. A 91, 012109 (2015)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Lu, X.-M., Wang, X., Sun, C.P.: Quantum fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Lorenzo, S., Plastina, F., Paternostro, M.: Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Bylicka, B., Chru´sci´nski, D., Maniscalco, S: Non-Markovianity as a resource for quantum technologies. arXiv:1301.2585
  28. 28.
    Hou, S.C., Yi, X.X., Yu, S.X., Oh, C.H.: An alternative non-Markovianity measure by divisibility of dynamical map. Phys. Rev. A 83, 062115 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Hou, S.C., Yi, X.X., Yu, S.X., Oh, C.H.: Singularity of dynamical maps. Phys. Rev. A 86, 012101 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    Rajagopal, A.K., Usha Devi, A.R., Rendell, R.W.: Kraus representation of quantum evolution and fidelity as manifestations of Markovian and non-Markovian avataras. Phys. Rev. A 82, 042107 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Alipour, S., Mani, A., Rezakhani, A.T.: Quantum discord and non-Markovianity of quantum dynamics. Phys. Rev. A 85, 052108 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Hall, M.J.W., Cresser, J.D., Li, L., Andersson, E.: Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A 89, 042120 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Chruscinski, D., Maniscalco, S.: Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7, 931 (2011)CrossRefGoogle Scholar
  35. 35.
    Yu, T., Eberly, J.H.: Evolution and control of decoherence of “standard” mixed states. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Carmichael, H.J.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Plank Equations, pp 6–32. Springer, Berlin (1999)CrossRefGoogle Scholar
  37. 37.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina
  2. 2.State Key Laboratory of Software Development EnvironmentBeihang UniversityBeijingChina
  3. 3.State Key Laboratory of Low-Dimensional Quantum PhysicsTsinghua UniversityBeijingChina
  4. 4.Key Laboratory of Quantum InformationUniversity of Science and Technology of China, Chinese Academy of SciencesHefeiChina

Personalised recommendations