International Journal of Theoretical Physics

, Volume 56, Issue 2, pp 624–633 | Cite as

Geometrical Quantum Discord Dynamics in a Two-Dimensional Coupled Cavities System

  • Lu Dao-ming


In this paper we studied the dynamics of the geometric quantum discord (GQD) in the two-dimensional coupled cavities system, composed of four single-mode cavities, each of which holds one two-level atom and is placed at one vertice of a square. The atoms resonantly interact with the corresponding cavity modes, and any pair of cavities placed on the same side are coupled via photon hopping. The evolutions of the GQDs between any pair of atoms and between any pair cavities are studied. The dependences of GQDs on the cavity-cavity coupling constant are discussed. The numerical simulations show that, with increase of cavity-cavity coupling, the GQDs between the atoms are strengthened, while those between the cavities are weakened.


Quantum optics Two-dimensional coupled cavities Two-level atom Geometrical quantum discord 



This work is supported by the Natural Science Foundation of Fujian Provice of China Under Grant No.2015J01020


  1. 1.
    Einstein, A, Podolsky, B, Rosen, N.: Phys. Rev. 47(9), 777 (1935)ADSCrossRefGoogle Scholar
  2. 2.
    Davidovich, L., Zagury, N., Brune, M., et al.: Phys. Rev. A 50, R895 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    Bennett, C. H., Brassard, G., Mermin, N. D.: Phys. Rev. Lett. 168, 557 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    Cirac, J. I., Zoller, P.: Phys. Rev. Lett. 74, 4091 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    Olliver, H, Zurek, W. H.: Phys. Rev. Lett. 88, 017901 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    Xu, P, Wu, T, Ye, L.: Int. J. Theor. Phys. 54, 1958 (2015)CrossRefGoogle Scholar
  7. 7.
    Cao, B L, Shi, Y, Jiang, D G: Int. J. Theor. Phys. 53(6), 1920 (2014)CrossRefGoogle Scholar
  8. 8.
    Chen, Q, Zhang, C J, Yu, S X, et al.: Phys. Rev. A 84, 042313 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Bai, Y K, Zhang, N, Ye, M Y, et al.: Phys. Rev. A 88, 012123 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Zhou, J, Guo, H.: Phys. Rev. A 87, 062315 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Giorgi, G. L.: Phys. Rev. A 88, 022315 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Wang, C L, Shen, J, Yi, X. X.: Chin. Phys. B 20, 050306 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Zhang, Y, Liu, JM, Li, YJ: Commun. Theor. Phys.(Beijing, China) 61, 691 (2014). (in Chinese)ADSCrossRefGoogle Scholar
  14. 14.
    Lanyon, B P, Barbieri, M, Almeida, M P, et al.: Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Dakic, B, Vedral, V, Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Pellizzari, T.: Phys. Rev. Lett. 79(26), 5242 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    Liao, CG, Yang, ZB, Chen, ZH: Commun. Theor. Phys. (Beijing, China) 54(4), 667 (2010). (in Chinese)ADSCrossRefGoogle Scholar
  18. 18.
    Liao, C G, Yang, Z B, Luo, C L, et al.: Optics Communications 284(6), 1920 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Ogden, C D, Irish, E K, Kim, M. S.: Phys. Rev. A. 78, 063805 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Cho, J, Angelakis, D G, Bose, S.: Phys. Rev. Lett. 101, 246809 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Lin, G W, Zou, X B, Lin, XM, et al.: Appl. Phys. Lett. 95, 224102 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Zhong, Z R, Lin, X, Zhang, B, et al.: Eur. Phys. J. D 66(11), 316 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Huang, XB, Zhong, ZR, Chen, YH: Int. J. Theor. Phys. 55(2), 1192 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Mechanic and Electronic EngineeringWuyi UniversityWuyishanPeople’s Republic of China

Personalised recommendations