Advertisement

International Journal of Theoretical Physics

, Volume 56, Issue 2, pp 362–371 | Cite as

Anisotropic Generalized Ghost Pilgrim Dark Energy Model in General Relativity

  • M. Vijaya Santhi
  • V. U. M. Rao
  • Y. Aditya
Article

Abstract

A spatially homogeneous and anisotropic locally rotationally symmetric (LRS) Bianchi type-I Universe filled with matter and generalized ghost pilgrim dark energy (GGPDE) has been studied in general theory of relativity. To obtain determinate solution of the field equations we have used scalar expansion proportional to the shear scalar which leads to a relation between the metric potentials. Some well-known cosmological parameters (equation of state (EoS) parameter (ω Λ), deceleration parameter (q) and squared speed of sound \({v_{s}^{2}}\)) and planes (\(\omega _{\Lambda }-\dot {\omega }_{\Lambda }\) and statefinder) are constructed for obtained model. The discussion and significance of these parameters is totally done through pilgrim dark energy parameter (β) and cosmic time (t).

Keywords

LRS Bianchi type-I metric Pilgrim dark energy General relativity Ghost dark energy State-finders 

References

  1. 1.
    Riess, A.G., et al.: Astrong. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Perlmutter, S., et al.: Astrophys. J. 517, 5 (1999)CrossRefGoogle Scholar
  3. 3.
    Tegmark, M., et al.: Phys. Rev. D 69, 103501 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    Ratra, B., Peebles, P.J.E.: Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    Wetterich, C.: Nucl. Phys. B 302, 668 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    Zlatev, I., Wang, L., Steinhardt, P.J.: Phys. Rev. Lett. 82, 896 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Steinhardt, P.J., Wang, L., Zlatev, I.: Phys. Rev. D 59, 123504 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Feng, B., Wang, X.L., Zhang, X.M.: Phys. Lett. B 607, 35 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Guo, Z.K., Piao, Y.S., Zhang, X.M., Zhang, Y.Z.: Phys. Lett. B 608, 177 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Sen, A.: J. High Energy Phys. 0207, 065 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    Armend, C., Mukhanov, V., Steinhardt, P.J.: Phys. Rev. Lett. 85, 4438 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Gasperini, M., et al.: Phys. Rev. D 65, 023508 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Wei, H., Cai, R.G., Zeng, D.F.: Class. Quantum Grav. 22, 3189 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Gumjudpai, B., Ward, J.: Phys. Rev. D 80, 023528 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Martin, J., Yamaguchi, M.: Phys. Rev. D 77, 123508 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Cohen, A.G., et al.: Phys. Rev. Lett. 82, 4971 (1999)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Wei, H.: Class. Quantum Grav. 29, 175008 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Sharif, M., Jawad, A.: Eur. Phys. J. C 73, 2382 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Sharif, M., Jawad, A.: Eur. Phys. J. C 73, 2600 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Sharif, M., Rani, S.: J. Exp. Theor. Phys. 119, 87 (2014)Google Scholar
  22. 22.
    Urban, F.R., Zhitnitsky, A.R.: Phys. Lett. B 688, 9 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Ohta, N.: Phys. Lett. B 695, 41 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Cai, R.G., Tua, Z.L., Zhang, H.B.: arXiv:1011:3212
  25. 25.
    Ebrahimi, E., Sheykhi, A.: Int. J. Mod. D 20, 2369 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Zhitnitsky, A.R.: arXiv:1112.3365
  27. 27.
    Cai, R.G., Tuo, Z.L., Wu, Y.B., Zhao, Y.Y.: Phys. Rev. D 86, 023511 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Sharif, M., Jawad, A.: Astrophys. Space Sci. 351, 321 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Jawad, A.: Eur. Phys. J. C 74, 3215 (2014)CrossRefGoogle Scholar
  30. 30.
    Jawad, A., Debnath, U., Batool, F.: Commun. Theor. Phys. 64, 590 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Sarkar, S.: Astrophys. Space Sci. 352, 859 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Kiran, M., Reddy, D.R.K., Rao, V.U.M.: Astrophys. Space Sci. 356, 407 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Kiran, M., Reddy, D.R.K., Rao, V.U.M.: Astrophys. Space Sci. 360, 54 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Adhav, K.S., et al.: Astrophys. Space Sci. 359, 24 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Reddy, D.R.K., et al.: Prespacetime journal 6, 1100 (2015)Google Scholar
  36. 36.
    Sahoo, P.K., Sivakumar, M.: Astrophys. Space Sci. 357, 60 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Santhi, M.V., Aditya, Y., Rao, V.U.M.: Astrophys. Space Sci. 361, 142 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    Rao, V.U.M., Divya Prasanthi, U.Y.: Can. J. Phys. 94, 1040 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    Collins, C.B., et al.: Gen. Relativ. Gravit. 12, 805 (1983)ADSCrossRefGoogle Scholar
  40. 40.
    Das, K., Sultana, T.: Astrophys. Space Sci. 360, 4 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    Sahni, V., Saini, T.D., Starobinsky, A.A., Alam, U.: JETP Lett. 77, 201 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    Caldwell, R.R., Linder, E.V.: Phys. Rev. Lett. 95, 141301 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Applied MathematicsAndhra UniversityVisakhapatnamIndia

Personalised recommendations