International Journal of Theoretical Physics

, Volume 55, Issue 12, pp 5331–5335 | Cite as

Analysis of Counterfactual Quantum Certificate Authorization

  • Tian-Yin Wang
  • Yan-Ping Li
  • Rui-Ling Zhang


A counterfactual quantum certificate authorization protocol was proposed recently (Shenoy et al., Phys. Rev. A 89, 052307 (20)), in which a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. However, this protocol requires a classical authenticated channel between Bob and Charlie to prevent possible attacks from the third party Alice, which is in conflict with the task of certificate authorization in the sense that Bob and Charlie can establish an unconditionally-secure key by a quantum key distribution protocol if there is a classical authenticated channel between them and hence securely transact with each other even without the assistance of the third party Alice.


Counterfactual Quantum certificate authorization Quantum key distribution 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61202317, 61572246, 61272015, 61402275), the Plan for Scientific Innovation Talents of Henan Province (Grant No. 164100510003), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 13HASTIT042), and the Key Scientific Research Project in Universities of Henan Province (Grant Nos. 16A520021, 16A120007).


  1. 1.
    Kohnfelder, L. M.: Towards a practical public-key cryptosystem. B.S. Thesis, MIT, Cambridge (1978)Google Scholar
  2. 2.
    Rivest, R. L.: Can we eliminate certificate revocation lists. Lect. Notes Comput. Sci. 1465, 178 (1998)CrossRefGoogle Scholar
  3. 3.
    Yang, Y. G., Wen, Q. Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chi. Phys. Mech. Astron. 51(8), 1079–1088 (2008)CrossRefMATHGoogle Scholar
  4. 4.
    Cai, X. Q., Wei, C. Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quant. Inf. Process. 12(4), 1651–1657 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gao, F., Qin, S. J., Guo, F. Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Chen, X. B., Yu, Y., Xu, G., et al.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Guo, P., Wang, J., Li, B., et al.: A variable threshold-value authentication architecture for wireless mesh networks. J. Int. Tech. 15, 929 (2014)Google Scholar
  8. 8.
    Xia, Z. H., Wang, X. H., Sun, X. M., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Para. Dis. Sys. 27, 340 (2015)CrossRefGoogle Scholar
  9. 9.
    Li, Y. B., Wang, T. Y., Chen, H. Y., et al.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theo. Phys. 52, 2818 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Shen, J., Tan, H., Wang, J., et al.: A novel routing protocol providing good transmission reliability in underwater sensor networks. J. Int. Tech. 16, 171 (2015)Google Scholar
  11. 11.
    Cai, X. Q., Zheng, Y. H., Zhang, R. L.: Cryptanalysis of a batch proxy quantum blind signature scheme. Int. J. Theo. Phys. 53, 3109 (2014)CrossRefMATHGoogle Scholar
  12. 12.
    Li, J., Li, X. L., Yang, B., et al.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. For. Sec. 10, 507 (2015)CrossRefGoogle Scholar
  13. 13.
    Wen, X. Z., Shao, L., Xue, Y., et al.: A rapid learning algorithm for vehicle classification. Inf. Sci. 295, 395 (2015)CrossRefGoogle Scholar
  14. 14.
    Noh, T. G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Sun, Y., Wen, Q. Y.: Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 82, 052318 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Liu, Y., Ju, L., Liang, X. L., et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Zhang, J. L., Guo, F. Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Li, Y. B.: Analysis of counterfactual quantum key distribution using error-correcting theory. Quant. Inf. Process. 13, 2325 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Salih, H.: Tripartite counterfactual quantum cryptography. Phys. Rev. A 90, 012333 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Shenoy, H. A., Srikanth, R., Srinivas, T.: Counterfactual quantum certificate authorization. Phys. Rev. A 89, 052307 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179. IEEE Press, London (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Mathematical ScienceLuoyang Normal UniversityLuoyangChina
  2. 2.Smart Travel Collaborative Innovation Center of Zhongyuan Economic AreaLuoyang Normal UniversityLuoyangChina
  3. 3.College of Mathematics and Information ScienceShaanxi Normal UniversityXianChina
  4. 4.School of Information TechnologyLuoyang Normal UniversityLuoyangChina

Personalised recommendations