Skip to main content
Log in

Analysis of Counterfactual Quantum Certificate Authorization

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A counterfactual quantum certificate authorization protocol was proposed recently (Shenoy et al., Phys. Rev. A 89, 052307 (20)), in which a trusted third party, Alice, authenticates an entity Bob (e.g., a bank) that a client Charlie wishes to securely transact with. However, this protocol requires a classical authenticated channel between Bob and Charlie to prevent possible attacks from the third party Alice, which is in conflict with the task of certificate authorization in the sense that Bob and Charlie can establish an unconditionally-secure key by a quantum key distribution protocol if there is a classical authenticated channel between them and hence securely transact with each other even without the assistance of the third party Alice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kohnfelder, L. M.: Towards a practical public-key cryptosystem. B.S. Thesis, MIT, Cambridge (1978)

  2. Rivest, R. L.: Can we eliminate certificate revocation lists. Lect. Notes Comput. Sci. 1465, 178 (1998)

    Article  Google Scholar 

  3. Yang, Y. G., Wen, Q. Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chi. Phys. Mech. Astron. 51(8), 1079–1088 (2008)

    Article  MATH  Google Scholar 

  4. Cai, X. Q., Wei, C. Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quant. Inf. Process. 12(4), 1651–1657 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Gao, F., Qin, S. J., Guo, F. Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  6. Chen, X. B., Yu, Y., Xu, G., et al.: Quantum state secure transmission in network communications. Inf. Sci. 276, 363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo, P., Wang, J., Li, B., et al.: A variable threshold-value authentication architecture for wireless mesh networks. J. Int. Tech. 15, 929 (2014)

    Google Scholar 

  8. Xia, Z. H., Wang, X. H., Sun, X. M., et al.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Para. Dis. Sys. 27, 340 (2015)

    Article  Google Scholar 

  9. Li, Y. B., Wang, T. Y., Chen, H. Y., et al.: Fault-tolerate quantum private comparison based on GHZ states and ECC. Int. J. Theo. Phys. 52, 2818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shen, J., Tan, H., Wang, J., et al.: A novel routing protocol providing good transmission reliability in underwater sensor networks. J. Int. Tech. 16, 171 (2015)

    Google Scholar 

  11. Cai, X. Q., Zheng, Y. H., Zhang, R. L.: Cryptanalysis of a batch proxy quantum blind signature scheme. Int. J. Theo. Phys. 53, 3109 (2014)

    Article  MATH  Google Scholar 

  12. Li, J., Li, X. L., Yang, B., et al.: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. For. Sec. 10, 507 (2015)

    Article  Google Scholar 

  13. Wen, X. Z., Shao, L., Xue, Y., et al.: A rapid learning algorithm for vehicle classification. Inf. Sci. 295, 395 (2015)

    Article  Google Scholar 

  14. Noh, T. G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. Sun, Y., Wen, Q. Y.: Counterfactual quantum key distribution with high efficiency. Phys. Rev. A 82, 052318 (2010)

    Article  ADS  Google Scholar 

  16. Liu, Y., Ju, L., Liang, X. L., et al.: Experimental demonstration of counterfactual quantum communication. Phys. Rev. Lett. 109, 030501 (2012)

    Article  ADS  Google Scholar 

  17. Zhang, J. L., Guo, F. Z., Gao, F., et al.: Private database queries based on counterfactual quantum key distribution. Phys. Rev. A 88, 022334 (2013)

    Article  ADS  Google Scholar 

  18. Li, Y. B.: Analysis of counterfactual quantum key distribution using error-correcting theory. Quant. Inf. Process. 13, 2325 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Salih, H.: Tripartite counterfactual quantum cryptography. Phys. Rev. A 90, 012333 (2014)

    Article  ADS  Google Scholar 

  20. Shenoy, H. A., Srikanth, R., Srinivas, T.: Counterfactual quantum certificate authorization. Phys. Rev. A 89, 052307 (2014)

    Article  ADS  Google Scholar 

  21. Bennett, C. H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp 175–179. IEEE Press, London (1984)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61202317, 61572246, 61272015, 61402275), the Plan for Scientific Innovation Talents of Henan Province (Grant No. 164100510003), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 13HASTIT042), and the Key Scientific Research Project in Universities of Henan Province (Grant Nos. 16A520021, 16A120007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Yin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TY., Li, YP. & Zhang, RL. Analysis of Counterfactual Quantum Certificate Authorization. Int J Theor Phys 55, 5331–5335 (2016). https://doi.org/10.1007/s10773-016-3152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3152-2

Keywords

Navigation