Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 11, pp 4972–4986 | Cite as

A Generalized Information Theoretical Model for Quantum Secret Sharing

  • Chen-Ming Bai
  • Zhi-Hui Li
  • Ting-Ting Xu
  • Yong-Ming Li
Article

Abstract

An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69–80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.

Keywords

Quantum information Quantum secret sharing Access structure 

Notes

Acknowledgments

We thank two anonymous reviewers for making very helpful and insightful comments to improve the paper. We thank Min Ma for stimulating discussions. This work was sponsored by the National Natural Science Foundation of China under Grant No.61373150, and Industrial Research and Development Project of Science and Technology of Shaanxi Province under Grant No.2013k0611.

References

  1. 1.
    Blakley, G.R.: . In: Proceedings of the National Computer Conference (AFIPS, 1979), pp 313C317 (1979)Google Scholar
  2. 2.
    Shamir, A.: How To share a secret. Commun. ACM 22(11), 612 (1979)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum Secret Sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cleve, R., Gottesman, D., Lo, H.-K.: How To share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Gottesman, D.: Theory Of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Tavakoli, A., Herbauts, I., Zukowski, M.: M.bourennane,:secret sharing with a single d-level quantum system. Phys. Rev. A 92(R), 030302 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    Vlad, G.: Generalized semiquantum secret-sharing schemes. Phys. Rev. A 85, 052309 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Zhang, Z., Liu, W., Li, C.: Quantum secret sharing based on quantum error-correcting codes. Chin. Phys. B 20(5), 050C309 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Aziz, M., Fatiha, M., Damian, M.: Quantum Secret Sharing with Error Correction. Commun. Theor. Phys 58, 661C671 (2012)MathSciNetMATHGoogle Scholar
  11. 11.
    Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Hsu, L.Y., Li, C.M.: Quantum secret sharing using product states. Phys. Rev. A 71, 022321 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Sarvepalli, P., Raussendorf, R.: Matroids and quantum-secret-sharing schemes. Phys. Rev. A 81, 052333 (2010)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Ogawa, T., Sasaki, A., Iwamoto, M., Yamamoto, H.: Quantum secret sharing schemes and reversibility of quantum operations. Phys. Rev. A 72, 032318 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Fu, Y., Yin, H.L., Chen, T.Y., Chen, Z.B.: Long-Distance Measurement-Device-Independent Multiparty quantum communication. Phys. Rev. Lett. 114, 090501 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Karimipour, V., Asoudeh, M.: Quantum secret sharing and random hopping: Using single states instead of entanglement. Phys. Rev. A 92(R), 030301 (2015)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91, 022330 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Nascimento, A.C.A., Muller-Quade, J., Imai, H.: Improving quantum secret-sharing schemes. Phys. Rev. A 64, 042311 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Paul, Z., Ryutaroh, M.: Quantum strongly secure ramp secret sharing. Quantum Inf. Process 14, 715C729 (2015)MathSciNetMATHGoogle Scholar
  20. 20.
    Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    Arpita, M., Goutam, P.: A Resilient Quantum Secret Sharing Scheme. Int. J. Theor. Phys. 54, 398C408 (2015)MathSciNetMATHGoogle Scholar
  22. 22.
    Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82, 022303 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Wen, A., Jackson, M., Keith, M.: Perfect Secret Sharing Schemes on Five Participants. Des. Codes Crypt. 9, 267C286 (1996)MathSciNetMATHGoogle Scholar
  24. 24.
    Motahhareh, G., Massoud, H.D.: The complexity of the graph access structures on six participants. Des. Codes Crypt. 67, 169C173 (2013)MathSciNetMATHGoogle Scholar
  25. 25.
    Jaume, M., Carles, P.: Secret Sharing Schemes with Three or Four Minimal Qualified Subsets. Des. Codes Crypt. 34, 17C34 (2005)MathSciNetMATHGoogle Scholar
  26. 26.
    Imai, H., Muller-Quade, J., Nascimento, A.C.A., Tuyls, P., Winter, A.: An Information Theoretical Model for Quantum Secret Sharing Schemes. Quantum Inf. Comput. 5(1), 69–80 (2005)MathSciNetMATHGoogle Scholar
  27. 27.
    Karin, R., Berry, S., Pim, T.: Quantum Information Theoretical Analysis of Various Constructions for Quantum Secret Sharing. International Symposium on Information Theory, 1598–1602 (2005)Google Scholar
  28. 28.
    Giovanni, D.C., Clemente, G.: Hypergraph decomposition and secret sharing. Discret. Appl. Math. 157(5), 928–946 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  30. 30.
    Liu, Y., Chen, T.Y., Wang, J., Pan, J.W., et al.: Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18, 8587–8594 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Chen, T.Y., Wang, J., Liang, H., Pan, J.W., et al.: Metropolitan all-pass and inter-city quantum communication network. Opt. Express 18, 27217–27225 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chen-Ming Bai
    • 1
  • Zhi-Hui Li
    • 1
  • Ting-Ting Xu
    • 1
  • Yong-Ming Li
    • 2
  1. 1.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anChina
  2. 2.College of Computer ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations