International Journal of Theoretical Physics

, Volume 55, Issue 11, pp 4878–4884 | Cite as

45 Relative Orientations of Planes of Polarizations States of Gravitational Waves and the Graviton

  • E. B. Manoukian


The recent detection of gravitational waves calls for, not just in words or by plausible arguments, of an explicit derivation of polarization aspects of gravitational waves with emphasis, especially, on the non-trivial aspect of the relative 45 orientations of the planes of polarization states of gravitation in the same way as has been done over the years for the far simpler case involving electromagnetic wave propagation with the well known relative 90 between its polarization states. The purpose of this communication is to carry out in a covariant description as well as by giving special attention to the underlying gauge problem these polarization aspects via a direct consideration of the graviton propagator in a quantum field theory setting from which fundamental properties of polarizations are readily extracted.


General relativity 45 relative orientations of the planes of polarizations states Propagator theory The graviton 


  1. 1.
    Abbott, B.P., et al.: Observational waves from a binary black hole merger. Phys. Rev. Lett. 116(1-16), 061102 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Abbott, B.P., et al.: Astrophysical implications of the binary black hole merger GW150914. Astrophys. J. Lett. L22(1-15), 818 (2016)Google Scholar
  3. 3.
    Castelvecchi, D., Witze, A.: Eintein’s Gravitational Waves Found at Last, (2016)
  4. 4.
    Weisberg, J.M., Nice, D.J., Taylor, J.H.: Timing measurements of the relativistic binary Pulsa PSR B1913+16. Astrophys. J. 722, 1030–1034 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Hulse, R.A., Talyor, J.H.: The discovery of the binary star. In: Ekspong, G. (ed.) Nobel Lectures (1993), Physics 1991–1995. World Scientific Publishing Co, Singapore (1997)Google Scholar
  6. 6.
    Weber, J.: Gravitational wave-detectors events. Phys. Rev. Lett. 20, 1307–1308 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    Weber, J.: Gravitational radiation detector observations in 1973 and 1974. Nature 266, 243 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    Einstein, A.: ÜBer Gravitationswellen. Sitzungsberichte der Kö,niglich Presußischen Akademie der Wissenschaften (Berlin) 1, 154–167 (1918)MATHGoogle Scholar
  9. 9.
    Maggiore, M.: Gravitational Waves: Volume 1: Theory and Experiments. Oxford University Press, Oxford (2007)CrossRefGoogle Scholar
  10. 10.
    Creighton, J.D.E., Anderson, W.G.: Gravitational-Wave Physics and Astronomy: an Introduction to Theory, Experiment and Data Analysis. Wiley-VCH, New York (2011)CrossRefMATHGoogle Scholar
  11. 11.
    Manoukian, E.B.: A quantum viewpoint of gravitational radiation. Gen. Relativ. Gravit. 22, 501–505 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Schwinger, J.: Particles and Sources. Gordon & Breach, New York (1969)MATHGoogle Scholar
  13. 13.
    Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)Google Scholar
  14. 14.
    Weinberg, S.: Gravitation and Cosmology, pp 255–258. Wiley, New York (1972)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.The Institute for Fundamental Study, The Tah Poe Academia InstituteNaresuan UniversityPhitsanulokThailand

Personalised recommendations