International Journal of Theoretical Physics

, Volume 55, Issue 8, pp 3788–3797 | Cite as

Quantum Storage in a Hybrid System with a Photonic Molecule and a Diamond Nitrogen Vacancy Center

  • Zhi Liu
  • Liang Qiu


We propose an efficient scheme for the realization of high-fidelity quantum storage in a hybrid system with a photonic molecule and a diamond nitrogen vacancy (NV) center. The scheme holds the advantages of both photonic crystal cavities and NV centers. Meanwhile, the influence of quantum-computing process on quantum memory can be effectively eliminated by separating the processor and memory units. Moreover, the scheme is experimentally feasible with currently available technology.


A photonic molecule A diamond nitrogen vacancy center High-fidelity quantum storage 



This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2015QNA44.


  1. 1.
    Vahala, K. J.: Optical microcavities. Nature (London) 424, 839 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Vahala, K.J.: Optical microcavities. World Scientific Publishing, Hackensack (2004)Google Scholar
  3. 3.
    Khitrova, G., Gibbs, H. M., Kira, M., Koch, S. W., Scherer, A.: Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81 (2006)CrossRefGoogle Scholar
  4. 4.
    Akahane, Y., Asano, T., Song, B. S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature (London) 425, 944 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Joannopoulos, J. D., Johnson, S. G., Winn, J. N., Meade, R. D.: Photonic crystals. Princeton University Press, Princeton (2008)MATHGoogle Scholar
  6. 6.
    Noda, S., Fujita, M., Asano, T.: Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 1, 449 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Song, B. S., Noda, S., Asano, T., Akahane, Y.: Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater 4, 207 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Hartmann, M. J., Brandao, F. G. S. L., Plenion, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849 (2006)CrossRefGoogle Scholar
  9. 9.
    Greentree, A. D., Taban, C., Cole, J. H., Hollenberg, L. C. L.: Quantum phase transitions of light. Nat. Phys. 2, 856 (2006)CrossRefGoogle Scholar
  10. 10.
    Atlasov, K. A., Karlsson, K. F., Rudra, A., Dwir, B., Kapon, E.: Wavelength and loss splitting in directly coupled photonic-crystal defect microcavities. Opt. Express 16, 16255 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    Atlasov, K.A., Rudra, A., Dwir, B., Kapon, E.: Large mode splitting and lasing in optimally coupled photonic-crystal microcavities. Opt. Express 19, 2619 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Carusotto, I., Gerace, D., Tureci, H. E., De Liberato, S., Ciuti, C., Imamoğlu, A.: Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Liew, T. C. H., Savona, V.: Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Vignolini, S., Riboli, F., Intonti, F., Wiersma, D. S., Balet, L., Li, L. H., Francardi, M., Gerardino, A., Fiore, A., Gurioli, M.: Mode hybridization in photonic crystal molecules. Appl. Phys. Lett. 97, 063101 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Bamba, M., Imamoğlu, A., Carusotto, I., Ciuti, C.: Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802(R) (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Houck, A. A., Türeci, H. E., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292 (2012)CrossRefGoogle Scholar
  17. 17.
    Majumdar, A., Rundquist, A., Bajcsy, M., Vučković, J.: Cavity quantum electrodynamics with a single quantum dot coupled to a photonic molecule. Phys. Rev. B 86, 045315 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Caselli, N., Intonti, F., Riboli, F., Vinattieri, A., Gerace, D., Balet, L., Li, L. H., Francardi, M., Gerardino, A., Fiore, A., Gurioli, M.: Antibonding ground state in photonic crystal molecules. Phys. Rev. B 86, 035133 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Jelezko, F., Gaebel, T., Popa, I., Gruber, A., Wrachtrup, J.: Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92, 076401 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    Hanson, R., Mendoza, F. M., Epstein, R. J., Awschalom, D. D.: Polarization and readout of coupled single spins in diamond. Phys. Rev. Lett. 97, 087601 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Childress, L., Gurudev Dutt, M. V., Taylor, J. M., Zibrov, A. S., Jelezko, F., Wrachtrup, J., Hemmer, P. R., Lukin, M. D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Stoneham, M.: Is a room-temperature, solid-state quantum computer mere fantasy? Physics 2, 34 (2009)CrossRefGoogle Scholar
  23. 23.
    Manson, N. B., Harrison, J. P., Sellars, M. J.: Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Maze, J. R., Gali, A., Togan, E., Chu, Y., Trifonov, A., Kaxiras, E., Lukin, M. D.: Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13, 025025 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Santori, C., Tamarat, P., Neumann, P., Wrachtrup, J., Fattal, D., Beausoleil, R. G., Rabeau, J., Olivero, P., Greentree, A. D., Prawer, S., Jelezko, F., Hemmer, P.: Coherent population trapping of single spins in diamond under optical excitation. Phys. Rev. Lett. 97, 247401 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Tamarat, P., Manson, N. B., Harrison, J. P., McMurtrie, R. L., Nizovtsev, A., Santori, C., Beausoleil, R. G., Neumann, P., Gaebel, T., Jelezko, F., Hemmer, P., Wrachtrup, J.: Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. New J. Phys. 10, 045004 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    Huck, A., Kumar, S., Shakoor, A., Andersen, U. L.: Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Ren, B. C., Deng, F. G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 11, 115202 (2013)Google Scholar
  29. 29.
    Wei, H. R., Deng, F. G.: Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A 88, 042323 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Wei, H. R., Deng, F. G.: Compact implementation of the (SWAP)(a) gate on diamond nitrogen-vacancy centers coupled to resonators. Quant. Inf. Process 14, 465 (2015)ADSCrossRefMATHGoogle Scholar
  31. 31.
    Wang, H., Lu, L. C., Deng, F. G.: Efficient generation of quantum cluster entangled states for distant diamond nitrogen-vacancy centers. Int. J. Theor. Phys. 54, 840 (2015)CrossRefMATHGoogle Scholar
  32. 32.
    Saito, S., Zhu, X., Amsüss, R., Matsuzaki, Y., Kakuyanagi, K., Shimo-Oka, T., Mizuochi, N., Nemoto, K., Munro, W. J., Semba, K.: Towards realizing a quantum memory for a superconducting qubit: Storage and retrieval of quantum states. Phys. Rev. Lett. 111, 101008 (2013)Google Scholar
  33. 33.
    Tao, M. J., Hua, M., Ai, Q., Deng, F. G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 062325 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    Park, Y. S., Cook, A. K., Wang, H.: Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett. 6, 2075 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Tomljenovic-Hanic, S., Steel, M. J., de Sterke, C. M., Salzman, J.: Diamond based photonic crystal microcavities. Opt. Express 14, 3556 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    McCutcheon, M. W., Lončar, M.: Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. Opt. Express 16, 19136 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Schietinger, S., Schröder, T., Benson, O.: One-by-one coupling of single defect centers in nanodiamonds to high-Q modes of an optical microresonator. Nano Lett. 8, 3911 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Gregor, M., Henze, R., Schröder, T., Benson, O.: On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator. Appl. Phys. Lett. 95, 153110 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Barclay, P. E., Santori, C., Fu, K. M., Beausoleil, R. G., Painter, O.: Coherent interference effects in a nano-assembled diamond NV center cavity-QED system. Opt. Express 17, 8081 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    Barclay, P.E., Fu, K.M., Santori, C., Beausoleil, R.G.: Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express 17, 9588 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Barth, M., Nüsse, N., Löchel, B., Benson, O.: Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity. Opt. Lett. 34, 1108 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Young, A., Hu, C. Y., Marseglia, L., Harrison, J. P., OBrien, J.L., Rarity, J.G.: Cavity enhanced spin measurement of the ground state spin of an NV center in diamond. New J. Phys. 11, 013007 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Englund, D., Shields, B., Rivoire, K., Hatami, F., Vučković, J., Park, H., Lukin, M. D.: Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Jin, J. S., Yu, C. S., Pei, P., Song, H. S.: Positive effect of scattering strength of a microtoroidal cavity on atomic entanglement evolution. Phys. Rev. A 81, 042309 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Yang, W. L., Yin, Z. Q., Xu, Z. Y., Feng, M., Du, J. F.: One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl. Phys. Lett 96, 241113 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    Wolters, J., Schell, A. W., Kewes, G., Nüsse, N., Schoengen, M., Döscher, H., Hannappel, T., Löchel, B., Barth, M., Benson, O.: Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett 97, 141108 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Yang, W. L., Yin, Z. Q., Xu, Z. Y., Feng, M., Oh, C. H.: Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys. Rev. A 84, 043849 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Chen, Q., Yang, W. L., Feng, M., Du, J. F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83, 054305 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    Liu, Y. C., Xiao, Y. F., Li, B. B., Jiang, X. F., Li, Y., Gong, Q.: Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: photon transport benefitting from Rayleigh scattering. Phys. Rev. A 84, 011805(R) (2011)ADSCrossRefGoogle Scholar
  50. 50.
    van der Sar, T., Hagemeier, J., Pfaff, W., Heeres, E. C., Thon, S. M., Kim, H., Petroff, P. M., Oosterkamp, T. H., Bouwmeester, D., Hanson, R.: Deterministic nanoassembly of a coupled quantum emitter-photonic crystal cavity system. Appl. Phys. Lett. 98, 193103 (2011)ADSCrossRefGoogle Scholar
  51. 51.
    Yu, X. C., Liu, Y. C., Yan, M. Y., Jin, W. L., Xiao, Y. F.: Coupling of diamond nanocrystals to a high-Q whispering-gallery microresonator. Phys. Rev. A 86, 043833 (2012)ADSCrossRefGoogle Scholar
  52. 52.
    Faraon, A., Santori, C., Huang, Z., Acosta, V. M., Beausoleil, R. G.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett 109, 033604 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    Yang, W. L., An, J. H., Zhang, C., Feng, M., Oh, C. H.: Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys. Rev. A 87, 022312 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Liu, S., Yu, R., Li, J., Wu, Y.: Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule. J. Appl. Phys 114, 244306 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    Chen, G. Y., Li, C. M., Chen, Y. N.: Generating maximum entanglement under asymmetric couplings to surface plasmons. Opt. Lett. 37, 1337 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Su, C. H., Greentree, A. D., Munro, W. J., Nemoto, K., Hollenberg, L. C. L.: Pulse shaping by coupled cavities: single photons and qudits. Phys. Rev. A 80, 033811 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Su, C. H., Greentree, A. D., Munro, W. J., Nemoto, K., Hollenberg, L. C. L.: High-speed quantum gates with cavity quantum electrodynamics. Phys. Rev. A 78, 062336 (2008)ADSCrossRefGoogle Scholar
  58. 58.
    Chen, Q., Yang, W. L., Feng, M.: Controllable quantum state transfer and entanglement generation between distant nitrogen-vacancy-center ensembles coupled to superconducting flux qubits. Phys. Rev. A 86, 022327 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    Fröhlich, H.: Theory of the superconducting state. I. The ground state at the absolute zero of temperature. Phys. Rev. 79, 845 (1950). Interaction of electrons with lattice vibrations. Proc. R. Soc. London, Ser. A 215, 291 (1952)ADSCrossRefMATHGoogle Scholar
  60. 60.
    Nakajima, S.: Perturbation theory in statistical mechanics. Adv. Phys. 4, 363 (1955)ADSMathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Sun, C. P.: High-order adiabatic approximations related to non-Abelian Berry’s phase factors and nuclear quadrupole resonance. Phys. Rev. D 41, 1318 (1990)ADSCrossRefGoogle Scholar
  62. 62.
    Wu, Y., Yang, X.: Effective two-level model for a three-level atom in the Ξ configuration. Phys. Rev. A 56, 2443 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    Zhang, H. R., Gao, Y. B., Gong, Z. R., Sun, C. P.: Molecular ensemble-based remote quantum storage for charge qubit via a quasidark state. Phys. Rev. A 80, 062308 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    Ai, Q., Shi, T., Long, G., Sun, C.P.: Induced entanglement enhanced by quantum criticality. Phys. Rev. A 78, 022327 (2008)ADSCrossRefGoogle Scholar
  65. 65.
    Neumann, P., Mizuochi, N., Rempp, F., Hemmer, P., Watanabe, H., Yamasaki, S., Jacques, V., Gaebel, T., Jelezko, F., Wrachtrup, J.: Multipartite entanglement among single spins in diamond. Science 320, 1326 (2008)ADSCrossRefGoogle Scholar
  66. 66.
    Jarmola, A., Acosta, V. M., Jensen, K., Chemerisov, S., Budker, D.: Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. Phys. Rev. Lett. 108, 197601 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Grezes, C., Julsgaard, B., Kubo, Y., Stern, M., Umeda, T., Isoya, J., Sumiya, H., Abe, H., Onoda, S., Ohshima, T., Jacques, V., Esteve, J., Vion, D., Esteve, D., Mølmer, K., Bertet, P.: Multimode storage and retrieval of microwave fields in a spin ensemble. Phys. Rev. X 4, 021049 (2014)Google Scholar
  68. 68.
    Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P. R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Material 8, 383 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    Mizuochi, N., Neumann, P., Rempp, F., Beck, J., Jacques, V., Siyushev, P., Nakamura, K., Twitchen, D. J., Watanabe, H., Yamasaki, S., Jelezko, F., Wrachtrup, J.: Coherence of single spins coupled to a nuclear spin bath of varying density. Phys. Rev. B 80, 041201 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    Bar-Gill, N., Pham, L. M., Jarmola, A., Budker, D., Walsworth, R. L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of SciencesChina University of Mining and TechnologyXuzhouChina

Personalised recommendations