International Journal of Theoretical Physics

, Volume 55, Issue 7, pp 3234–3250 | Cite as

Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

  • Li-Hua Gong
  • Xiang-Tao He
  • Shan Cheng
  • Tian-Xiang Hua
  • Nan-Run Zhou


A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen’s hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen’s hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.


Hyper-chaotic system Quantum image XOR operation Quantum image encryption algorithm 



This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061, 61262084 and 61561033), the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) (Grant No. 20122BCB23002), the Natural Science Foundation of Jiangxi Province, China (grant no. 20151BAB207002), and the Research Foundation of the Education Department of Jiangxi Province (Grant No. GJJ14138).


  1. Liu, Y.J., Zheng, Y.Q.: Adaptive robust fuzzy control for a class of uncertain chaotic systems [J]. Nonlinear Dyn. 57 (3), 431–439 (2009).MathSciNetCrossRefMATHGoogle Scholar
  2. Han Q., Liu C.X., Sun L., et al: A fractional order hyper-chaotic system derived from a Liu system and its circuit realization [J]. Chinese Phy. B. 22 (2), 020502 (2013).ADSCrossRefGoogle Scholar
  3. Wang, X., Zhao, J., Liu, H.: A new image encryption algorithm based on chaos [J]. Opt. Commun. 285 (5), 562–566 (2012).ADSCrossRefGoogle Scholar
  4. Lian, S.: A block cipher based on chaotic neural networks [J]. Neurocomputing. 72 (4–6), 1296–1301 (2009).CrossRefGoogle Scholar
  5. Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps [J]. Int. J. Bifurcation Chaos. 8 (6), 1259–1284 (1998).MathSciNetCrossRefMATHGoogle Scholar
  6. Guan, Z.H., Huang, F., Guan, W.: Chaos-based image encryption algorithm [J]. Phys. Lett. A. 346 (1), 153–157 (2005).ADSCrossRefMATHGoogle Scholar
  7. Gao, H.J., Zhang, Y., Liang, S., et al.: A new chaotic algorithm for image encryption [J]. Chaos, Solitons Fractals. 29 (2), 393–399 (2006).ADSCrossRefMATHGoogle Scholar
  8. Wang, X., Guo, K.: A new image alternate encryption algorithm based on chaotic map [J]. Nonlinear Dyn. 76 (4), 1943–1950 (2014).CrossRefGoogle Scholar
  9. Chen, C.H., Sheu, L.J., Chen, H.K., et al.: A new hyper-chaotic system and its synchronization [J]. Nonlinear Anal. Real World Appl. 10 (4), 2088–2096 (2009).MathSciNetCrossRefMATHGoogle Scholar
  10. Gao, T., Chen, Z., Gu, Q., et al.: A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback [J]. Chaos, Solitons Fractals. 35 (2), 390–397 (2008).ADSCrossRefGoogle Scholar
  11. Gao, T., Chen, Z.: A new image encryption algorithm based on hyper-chaos [J]. Phys. Lett. A. 372 (4), 394–400 (2008).ADSMathSciNetCrossRefMATHGoogle Scholar
  12. Wei, X., Guo, L., Zhang, Q., et al.: A novel color image encryption algorithm based on DNA sequence operation and hyper-chaotic system [J]. Syst. Softw. 85 (2), 290–299 (2012).CrossRefGoogle Scholar
  13. Hermassi, H., Rhouma, R., Belghith, S.: Improvement of an image encryption algorithm based on hyper-chaos [J]. Telecommun. Syst. 52 (2), 539–549 (2013).Google Scholar
  14. Zhu, H., Zhao, C., Zhang, X.: A novel image encryption-compression scheme using hyper-chaos and Chinese remainder theorem [J]. Signal Process. Image Commun. 28 (6), 670–680 (2013).CrossRefGoogle Scholar
  15. Norouzi, B., Mirzakuchaki, S.: A fast color image encryption algorithm based on hyper-chaotic systems [J]. Nonlinear Dyn. 78 (2), 995–1015 (2014).CrossRefGoogle Scholar
  16. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (quip) [C]. IEEE 32nd Applied imagery pattern recognition workshop, Proceedings, 39–44 (2003).Google Scholar
  17. Nielson, M.A., Chuang, I.L.: Quantum computation and quantum information [M]. Cambridge University Press, Cambridge (2000).Google Scholar
  18. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems [J]. Quantum Inf. Process. 9 (1), 1–11 (2010).MathSciNetCrossRefGoogle Scholar
  19. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations [J]. Quantum Inf. Process. 10 (1), 63–84 (2011).MathSciNetCrossRefMATHGoogle Scholar
  20. Sun, B., Le, P.Q., Iliyasu, A.M., et al.: A multi-channel representation for images on quantum computers using the RGB color space [C]. IEEE 7th international symposium on intelligent signal processing (WISP), 1–6 (2011).Google Scholar
  21. Le, P.Q., Iliyasu, A.M., Garcia, J.A., et al.: Representing visual complexity of images using a 3D feature space based on structure, noise, and diversity [J]. J. Adv. Comp. Intell. Intell. Infor. 16 (5), 631–640 (2012).Google Scholar
  22. Zhang, Y., Lu, K., Gao, Y., et al.: A novel quantum representation for log-polar images [J]. Quantum Inf. Process. 12 (9), 3103–3126 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  23. Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images [J]. Quantum Inf. Process. 13 (6), 1353–1379 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images [J]. Quantum Inf. Process. 12 (8), 2833–2860 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  25. Akhshani, A., Akhavan, A., Lim, S.C., et al.: An image encryption scheme based on quantum logistic map [J]. Commun. Nonlinear Sci. Numer. Simul. 17 (12), 4653–4661 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar
  26. Abd El-Latif, A.A., Li, L., Wang, N., et al.: A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces [J]. Signal Process. 93 (11), 2986–3000 (2013).CrossRefGoogle Scholar
  27. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations [J]. Int. J. Theor. Phys. 52 (6), 1802–1817 (2013).MathSciNetCrossRefGoogle Scholar
  28. Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform [J]. Quantum Inf. Process. 12 (2), 793–803 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  29. Yang, Y.G., Xia, J., Jia, X., et al.: Novel image encryption/decryption based on quantum Fourier transform and double phase encoding [J]. Quantum Inf. Process. 12 (11), 3477–3493 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  30. Song, X., Wang, S., Abd El-Latif, A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform [J]. Multimed. Syst. 20 (4), 379–388 (2014).CrossRefGoogle Scholar
  31. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling [J]. Int. J. Theor. Phys. 53 (7), 2463–2484 (2014).CrossRefMATHGoogle Scholar
  32. Song, X.H., Wang, S., Abd El-Latif, A.A., et al.: Quantum image encryption based on restricted geometric and color transformations [J]. Quantum Inf. Process. 13 (8), 1765–1787 (2014).ADSMathSciNetCrossRefMATHGoogle Scholar
  33. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion [M]. Intelligent Data Analysis and Its Applications, Volume II. Springer International Publishing. 298, 243–250 (2014).Google Scholar
  34. Cao, G.H., Zhou, J., Zhang, Y.Z., et al.: Quantum chaotic image encryption with one time running key [J]. Int. J. Secur. Appl. 8 (4), 77–88 (2014).Google Scholar
  35. Yang, Y.G., Pan, Q.X., Sun, S.J., et al.: Novel image encryption based on quantum walks [J]. Sci. Rep. 5, 7784 (2015).ADSCrossRefGoogle Scholar
  36. Zhou, N.R., Hua, T.X., Gong, L.H., et al.: Quantum image encryption based on generalized Arnold transform and double random-phase encoding [J]. Quantum Inf. Process. 14 (4), 1193–1213 (2015).ADSMathSciNetCrossRefMATHGoogle Scholar
  37. Hua, T.X., Chen, J.M., Pei D.J., et al.: Quantum image encryption algorithm based on image correlation decomposition [J]. Int. J. Theor. Phys. 54 (2), 526–537 (2015).CrossRefMATHGoogle Scholar
  38. Wang, X., Chen, F., Wang, T.: A new compound mode of confusion and diffusion for block encryption of image based on chaos [J]. Commun. Nonlinear Sci. Numer. Simul. 15 (9), 2479–2485 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  39. Chen, J.X., Zhu, Z.L., Fu, C., et al.: A fast image encryption scheme with a novel pixel swapping-based confusion approach [J]. Nonlinear Dyn. 77 (4), 1191–1207 (2014).CrossRefGoogle Scholar
  40. Bhatnagar, G., Wu, Q.M.J., Raman, B.: Discrete fractional wavelet transform and its application to multiple encryption [J]. Inform. Sci. 223, 297–316 (2013).MathSciNetCrossRefMATHGoogle Scholar
  41. Hennelly, B.M., Sheridan, J.T.: Image encryption and the fractional Fourier transform [C]. Image International Society for Optics and Photonics, Ireland (2003).Google Scholar
  42. Lloyd, S.: Almost any quantum logic gate is universal [J]. Phys. Rev. Lett. 75 (2), 346–349 (1995).ADSMathSciNetCrossRefGoogle Scholar
  43. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations [J]. Phys. Rev. A. 54 (1), 147–159 (1996).ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Li-Hua Gong
    • 1
  • Xiang-Tao He
    • 1
  • Shan Cheng
    • 2
  • Tian-Xiang Hua
    • 1
  • Nan-Run Zhou
    • 1
  1. 1.Department of Electronic Information EngineeringNanchang UniversityNanchangChina
  2. 2.Department of Electrical EngineeringJiangxi Vocational College of Mechanical & Electrical TechnologyNanchangChina

Personalised recommendations