Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 6, pp 3059–3078 | Cite as

The Role of Spin in Entanglement Generated by Expanding Spacetime

  • Roberto Pierini
  • Shahpoor Moradi
  • Stefano Mancini
Article

Abstract

We investigate the effects of spin on entanglement arising in Dirac field in an expanding spacetime characterized by the Robertson-Walker metric. We present a general approach that allows us to treat the case where only charge conservation is required, as well as the case where also angular momentum conservation is required. We find that in both situations entanglement originated from the vacuum and quantified by subsystem entropy behaves the same and does not qualitatively deviates from the spinless case. Differences only arise when particles and/or antiparticles are present in the input state.

Keywords

Quantum fields in curved spacetime Entanglement characterization 

References

  1. 1.
    Peres, A., Terno, D.R.: Rev. Mod. Phys. 76, 93 (2004)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Alsing, P.M., Fuentes, I.: Class. Quantum Grav. 29 (2012)Google Scholar
  3. 3.
    Rideout, D., et al.: Class. Quantum Grav. 29, 224011 (2012)CrossRefADSGoogle Scholar
  4. 4.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Jordan, T.F., Shaji, A., Sudarshan, E.C.G.: Phys. Rev. A 75, 022101 (2007)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Cafaro, C., Capozziello, S., Mancini, S.: Int. J. Theor. Phys. 51, 2313 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fuentes-Schuller, I., Mann, R.B.: Phys. Rev. Lett. 95, 120404 (2005)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Phys. Rev. A 74, 032326 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Mann, R.B., Villalba, V.M.: Phys. Rev. A 80, 022305 (2009)CrossRefADSGoogle Scholar
  10. 10.
    Leon, J., Martinez E.M.: Phys. Rev. A 80, 012314 (2009)CrossRefADSGoogle Scholar
  11. 11.
    Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge University Press, Cambridge (1982)CrossRefMATHGoogle Scholar
  12. 12.
    Terashima, H., Ueda, M.: Phys. Rev. A 69, 032113 (2004)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Shi, Y.: Phys. Rev. D 70, 105001 (2004)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Ball, J.L., Schuller, I.F., schuller, F.P.: Phys. Lett. A 359, 550 (2006)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Ver Steeg, G., Menicucci, N.C.: Phys. Rev. D 79, 044027 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Fuentes, I., Mann, R.B., Martin-Martinez, E., Moradi, S.: Phys. Rev. D 82, 045030 (2010)CrossRefADSGoogle Scholar
  17. 17.
    Martin-Martinez, E., Menicucci, N.C.: Class. Quantum Grav. 29, 224003 (2012)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    Moradi, S., Pierini, R., Mancini, S.: Phys. Rev. D 89, 024022 (2014)CrossRefADSGoogle Scholar
  19. 19.
    Duncan, A.: Phys. Rev. D 17, 964 (1978)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Bogolyubov, N.N.: Zh. Eksp. Teo. Fiz. 34, 58 (1958) [Sov. Phys. JETP 34, 41 (1958)].Google Scholar
  21. 21.
    Wilcox, R.M.: J. Math. Phys. 8, 962 (1967)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Roberto Pierini
    • 1
    • 2
  • Shahpoor Moradi
    • 3
  • Stefano Mancini
    • 1
    • 2
  1. 1.School of Science and TechnologyUniversity of CamerinoCamerinoItaly
  2. 2.INFN Sezione di PerugiaPerugiaItaly
  3. 3.Department of GeoscienceUniversity of CalgaryCalgaryCanada

Personalised recommendations