International Journal of Theoretical Physics

, Volume 55, Issue 6, pp 2837–2856 | Cite as

Upon Generating (2+1)-dimensional Dynamical Systems



Under the framework of the Adler-Gel’fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.


Hamiltonian pair TAH scheme Super Lie algebra 



This work was supported by the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014) and the National Natural Science Foundation of China (grant No. 11371361) as well as the Natural Science Foundation of Shandong Province (grant No. ZR2013AL016).

Yufeng Zhang is grateful to professor Tu Guizhang for his guidance and help!


  1. 1.
    Adler, M.: On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-Devries type equation. Invent. Math. 50, 219 (1979)CrossRefMATHADSGoogle Scholar
  2. 2.
    Gel’fand, I.M., Dikii, L.A.: Collected Works. Springer, New York (1990)Google Scholar
  3. 3.
    Dorfamn, I.Ya., Fokas, A.S.: Hamiltonian theory over noncommutative rings and integrability in multidimensions. J. Math. Phys. 33, 2504 (1992)MathSciNetCrossRefMATHADSGoogle Scholar
  4. 4.
    Athorne, C., Dorfman, I.Ya.: The Hamiltonian structure of the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur hierarchy. J. Math. Phys. 34, 3507 (1993)MathSciNetCrossRefMATHADSGoogle Scholar
  5. 5.
    Tu, G.Z., Andrushkiw, R.I., Huang, X.C.: A trace identity and its application to integrable systems of 1+2 dimensions. J. Math. Phys. 32, 1900 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  6. 6.
    Zhang, Y.F., Rui, W.J.: On generating (2+1)-dimensional hierarchies of evolution equations. Commun. Nonlinear Sci Numer. Simulat. 19, 3454 (2014)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Zhang, Y.F., Rui, W.J., Tam, H.W.: An (2+1)-dimensional expanding model of the Davey-Stewartson hierarchy as well as its Hamiltonian structure. Discontinuity, Nonlinearity, Complex. 3, 427 (2014)CrossRefMATHGoogle Scholar
  8. 8.
    Zhang, Y.F., Gao, J., Wang, G.M.: Two (2+1)-dimensional hierarchies of evolution equations and their hamiltonian structures. Appl. Math. Comput. 243, 601 (2014)MathSciNetMATHGoogle Scholar
  9. 9.
    Zhang, Y.F., Zhao, Z.L., Wang, G.M.: On generating linear and nonlinear integrable systems with variable coefficients. Appl. Math. Comput. 244, 672 (2014)MathSciNetMATHGoogle Scholar
  10. 10.
    Tu, G.Z., Feng, B.L., Zhang, Y.F.: The residue and binormial representation of (2+1)-dimensional AKNS hierarchy. J. Weifang Univ. 14, 1 (2014)Google Scholar
  11. 11.
    Zhang, Y.F., Wu, L.X., Rui, W.J.: A corresponding Lie algebra of a reductive homogeneous group and its applications. Commun. Theor. Phys. 63, 535–548 (2015)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Athorne, C., Fordy, A.: Integrable equations in (2+1)-dimensions associated with symmetric and homogeneous spaces. J. Math. Phys. 28, 2018 (1987)MathSciNetCrossRefMATHADSGoogle Scholar
  13. 13.
    Zhang, Y.F., Zhang, H.Q.: A direct method for integrable couplings of TD hierarchy. J. Math. Phys. 43, 466 (2002)MathSciNetCrossRefMATHADSGoogle Scholar
  14. 14.
    Tu, G.Z.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30, 330 (1989)MathSciNetCrossRefMATHADSGoogle Scholar
  15. 15.
    Ma, W.X.: A hierarchy of Liouville integrable generalized Hamiltonian equations and its reduction. Chin. J. Contemp. Math. 13, 79 (1992)MathSciNetGoogle Scholar
  16. 16.
    Hu, X.B.: An approach to generate super-extensions of integrable systems. J. Phys. A 30, 619 (1997)MathSciNetCrossRefMATHADSGoogle Scholar
  17. 17.
    Cao, C.W., Wu, Y.T., Geng, X.G.: On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Phys. Lett. A 256, 59 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Zhang, Y.F., Rui, W.J.: A few super-integrable hierarchies and some reductions, super-Hamiltonian structures. Rep. Math. Phys. 75, 231 (2015)MathSciNetCrossRefMATHADSGoogle Scholar
  19. 19.
    Zhou, R.G.: A Darboux transformation of the sl(2/1) super KdV hierarchy and a super lattice potential KdV equation. Phys. Lett. A 378, 1816 (2014)MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    Geng, X.G., Wu, L.H.: A new super-extension of the KdV hierarchy. Appl. Math. Lett. 23, 716 (2010)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wadati, M.: Invariances and conservation laws of the Korteweg-de Vries equation. Stud. Appl. Math. 59, 153 (1978)MathSciNetCrossRefMATHADSGoogle Scholar
  22. 22.
    Wadati, M., Toda, M.: The exact solution of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 32, 1403 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of SciencesChina University of Mining and TechnologyXuzhouPeople’s Republic of China
  2. 2.School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations