International Journal of Theoretical Physics

, Volume 55, Issue 6, pp 2764–2772 | Cite as

Remote State Preparation of a Two-Atom Entangled State in Cavity QED

  • Xiao-Qi Xiao
  • Junfang Xiao
  • Yuan Ren
  • Yuan Li
  • Chunlei Ji
  • Xin-Gang Huang


A physical scheme for remotely preparing a diatomic entangled state based on the cavity QED technique is presented in this paper. The quantum channel is composed of a two-atom entangled state and a three-atom entangled W state. The non-resonant interaction between two atoms and cavity is utilized at sender’s side to distribute the information among the quantum channel, and the original state can be transmitted to either one of the two receivers. It shows that an extra cavity and an atom are needed at the final receiver’s side as an auxiliary system if the non-maximally entangled states are worked as the quantum channel. The total success probabilities for the two receivers are not equal to each other except that the states of the quantum channel are maximally entangled.


Remote state preparation Non-resonant interaction Two-atom entangled state 



This research was financially supported by the National Natural Science Foundation of China (No: 61201258), the Open Fund of Shanghai Dianji University for Computer Application Technology (No. 13XKJ01-2) and the Program of Practice learning for Faculty Development in Universities of Shanghai .


  1. 1.
    Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefMATHADSGoogle Scholar
  2. 2.
    Bennett, C.H., et al.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)MathSciNetCrossRefMATHADSGoogle Scholar
  3. 3.
    Paki, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)ADSGoogle Scholar
  4. 4.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Bennett, C.H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077920 (2001)CrossRefGoogle Scholar
  6. 6.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)MathSciNetCrossRefMATHADSGoogle Scholar
  7. 7.
    Davidovich, L., Zagury, N., Brune, M., Raimond, J.M., Haroche, S.: Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A 50, 895 (1994)CrossRefADSGoogle Scholar
  8. 8.
    Cirac, J.I., Parkins, A.S.: Teleportation of an atomic state between two cavities using nonlocal microwave fields. Phys. Rev. A 50, 4441 (1994)CrossRefADSGoogle Scholar
  9. 9.
    Zheng, S.B., Guo, G.C.: Efficient Scheme for two-atom entanglement and quantum information processing in Cavity QED. Phys. Rev. Lett. 85, 2392 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)MathSciNetCrossRefMATHADSGoogle Scholar
  11. 11.
    Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in the thermal motion. Phys. Rev. A 68, 035801 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Yang, C. P., Chu, S-I, Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Yang, C. P., Chu, S-I, Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Bonato, C., Haupt, F., Oemrawsingh, S. S. R., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Barrett, S. D., Rohde, P. P., Stace, T. M.: Scalable quantum computing with atomic ensembles. New J. Phys. 12, 093032 (2010)CrossRefADSGoogle Scholar
  16. 16.
    Yang, C. P.: Quantum information transfer with superconducting flux qubits coupled to a resonator. Phys. Rev. A 82, 054303 (2010)CrossRefADSGoogle Scholar
  17. 17.
    C-P Yang, Q-P Su, Han, S.: Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phy. Rev. A 86, 022329 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Zheng, S.B.: Simplified construction and physical realization of n-qubit controlled phase gates. Phys. Rev. A 86, 012326 (2012)CrossRefADSGoogle Scholar
  19. 19.
    Wei, H. R., Deng, F. G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A 87, 022305 (2013)CrossRefADSGoogle Scholar
  20. 20.
    Liu, Y.: Scheme for the preparation of macroscopic W-type state of atomic ensembles in cavity QED coupled with optical fibers. Sci. Chin.-Phys. Mech Astron. 56, 2122 (2013)CrossRefADSGoogle Scholar
  21. 21.
    Luo, M. X., Deng, Y., Li, H. R., et al.: Generations of N-atom GHZ state and 2n-atom W state assisted by quantum dots in optical microcavities. Quantum Inf. Process 14, 3661 (2015)MathSciNetCrossRefMATHADSGoogle Scholar
  22. 22.
    Ye, L., Ma, Y-C, Guo, G-C: Remote state preparation of quantum state via cavity QED. Int. J. Quantum Inf. 3, 475 (2005)CrossRefMATHGoogle Scholar
  23. 23.
    Xu, X-B, Liu, J-M: Probabilistic remote preparation of a three-atom Greenberger-Horne-Zeilinger class state via cavity quantum electrodynamics. Can. J. Phys. 84, 1089 (2006)CrossRefADSGoogle Scholar
  24. 24.
    Wang, X-W, Pen, Z-H: Scheme for implementing perfect remote state preparation with W-class state in cavity QED. Chin. Phys. B 17, 2346 (2008)CrossRefADSGoogle Scholar
  25. 25.
    Ashfaq, H. K., Rameez-ul-lslam, Farhan, S.: Remote preparation of atomic and field cluster states from a pair of tripartite GHZ states. Chin. Phys. B 19, 040309 (2010)CrossRefADSGoogle Scholar
  26. 26.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057902 (2003)CrossRefADSGoogle Scholar
  27. 27.
    Berry, D.W.: Resources required for exact remote state preparation. Phys. Rev. A 70, 062306 (2004)CrossRefADSGoogle Scholar
  28. 28.
    Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)CrossRefADSGoogle Scholar
  29. 29.
    Barreiro, J. T., Wei, T. C., Kwiat, P. G. Phys. Rev. Lett. 105, 030407 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Solis-Prosser, M. A., Neves, L.: Remote state preparation of spatial qubit. Phys. Rev. A 84, 012330 (2011)CrossRefADSGoogle Scholar
  31. 31.
    Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748 (2011)CrossRefMATHGoogle Scholar
  32. 32.
    Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T, Vedral4, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 2377 (2012)Google Scholar
  33. 33.
    Luo, M. X., Chen, X. B., Yang, Y. X., et al.: Experimental architecture of joint remote state preparation. Quantum Inf. Process 11, 751 (2012)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Radmak, M., Wiesniak, M., Zukowski, M., Bourennane, M.: Experimental multiplication remote state preparation. Phys. Rev. A 88, 032304 (2013)CrossRefADSGoogle Scholar
  35. 35.
    Wang, Z-Y: Highly efficient remote preparation of an arbitrary three-qubit state via a four-qubit cluster state and an EPR state. Quantum Inf. Process 12, 1321 (2013)CrossRefMATHADSGoogle Scholar
  36. 36.
    Luo, M-X, Deng, Y., Chen, X-B, Yang, Y-X: The faithful remote preparation of general quantum states. Quantum Inf. Process 12, 279 (2013)MathSciNetCrossRefMATHADSGoogle Scholar
  37. 37.
    Cao, T. B., Nguyen, B. A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci.: Nanotechnol. 5, 015003 (2014)Google Scholar
  38. 38.
    Zhou, N. R., Cheng, H. L., Tao, X. Y., et al.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process 13, 513 (2014)CrossRefMATHGoogle Scholar
  39. 39.
    Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity QED. Phys. Rev. Lett. 90, 027903 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiao-Qi Xiao
    • 1
  • Junfang Xiao
    • 2
  • Yuan Ren
    • 1
  • Yuan Li
    • 1
  • Chunlei Ji
    • 1
  • Xin-Gang Huang
    • 3
  1. 1.Electronic Information CollegeShanghai Dianji UniversityShanghaiChina
  2. 2.Electronic Science and Technology Information Institution of MIIT ShijingshanBeijingChina
  3. 3.Wireline Product OperationZTE CorporationShanghaiChina

Personalised recommendations