Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 5, pp 2460–2468 | Cite as

Protection of Quantum Correlation Through the Quantum Erasing Effect

  • Hui-Yun Xu
  • Guo-Hui Yang
Article
  • 108 Downloads

Abstract

By taking into account the quantum erasing effect(QEE), the quantum discord (QD) behavior of a two-qubit system with different initial states are investigated in detail. We find that the quantum correlation can be saved under a scheme of two spatially separated atoms, each located in a leaky cavity through the quantum erasing method. It is shown that QEE can weaken the effects of decoherence, and preserve the maximum information of the coherent item. No matter whether the two atoms are in the mixted or pure state, one can robusty save their initial quantum correlation even the number of erasing events is finite. If one limit the erasing events N, the QEE can be used to protect the initial quantum correlation independently of the state in which it is stored, the values of QD is always nearly equal to the initial QD values, and it is nearly independent of the decoherence, which imply us more encourage strategy for protecting the quantum correlation properties in some quantum systems.

Keywords

Quantum discord Quantum erasing effect Environment 

References

  1. 1.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Quan, H.T., Song, Z., Liu, X.F., Zanardi, P., Sun, C.P.: Phys. Rev. Lett. 96, 140604 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    Cheng, W.W., Liu, J.M.: Phys. Rev. A 79, 052320 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Bennett, C.H., Divincenzo, D.P., Fuchs, C.A., et al.: Phys. Rev. A 59, 1070 (1999)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilings, A.: Rev. Lett 80, 3891 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Horodecki, M., Horodecki, P., Horodecki, R., et al.: Phys. Rev. A 71, 062307 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Ollivier, H., Zurek, W.H.: Phys. Rev. Lett. 88, 017901 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    Henderson, L., Vedral, V.: J. Phys. Rev. A 34, 6899 (2001)ADSMathSciNetGoogle Scholar
  9. 9.
    Luo, S.: Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Dakic, B., Vedral, V., Brukner, C.: Phys. Rev. Lett. 105, 190502 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Luo, S., Fu, S.: Phys. Rev. Lett. 106, 120401 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Chen, L., Chitambar, E., Modi, K., Vacanti, G.: Phys. Rev. A 83, 020101 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Datta, A., Shaji, A., Caves, C.M.: Phys. Rev. Lett. 100, 050502 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Phys. Rev. Lett. 101, 200501 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Datta, A., Gharibian, S.: Phys. Rev. A 79, 042325 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Ekert, A., Macchiavello, C.: Phys. Rev. Lett. 77, 2585 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    Vitali, D., et al.: Phys. Rev. Lett. 79, 2442 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Viola, L., Lloyd, S.: Phys. Rev. A 58, 2733 (1998)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Zhang, G., Keitel, C.H.: Phys. Rev. A 66, 022306 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Filip, R.: Phys. Rev. A 67, 014308 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Xiang, S.H., Deng, X.P., Song, K.H.: Chin. Phy. Lett. 29, 050304 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, C.Z., Li, C.X., et al.: J. Phys. A, Math. Theor. 44, 015503 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Physics and Electronics EngineeringShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.School of Physics and Information EngineeringShanxi Normal UniversityLinfenPeople’s Republic of China

Personalised recommendations