Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 5, pp 2335–2341 | Cite as

Electromagnetically Induced Quantum Holographic Imaging

  • Tian-Hui Qiu
  • Min Xie
  • Hong-Yang Ma
  • Chun-Hong Zheng
  • Li-Bo Chen
Article
  • 149 Downloads

Abstract

We study the quantum holographic imaging of one-dimensional electromagnetically induced grating created by a strong standing wave in an atomic medium. Entangled photon pairs, generated in a spontaneous parametric down-conversion process, are employed as the imaging light to realize coincidence recording. By theoretical analysis and numerical simulation, we find that both the amplitude and phase information of the object can be imaged with the characteristic of imaging nonlocally and of arbitrarily controllable image variation in size.

Keywords

Holographic imaging Electromagnetically induced grating Electromagnetically induced transparency 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China, Project No. 11447156, Natural Science Foundation of Shandong Province, Project No. ZR2014AQ006, and Youth Foundation of Jiangxi Provincial Education Department, Project No. GJJ14276.

References

  1. 1.
    Gabor, D.: Nature 161, 777 (1948)ADSCrossRefGoogle Scholar
  2. 2.
    Dai, H.N., Zhang, H., Yang, S.J., Zhao, T.M., Rui, J., Deng, Y.J, Li, L., Liu, N.L., Chen, S., Bao, X.H., Jin, X.M., Zhao, B., Pan, J.W.: Phys. Rev. Lett. 108, 210501 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Hillman, T.R., Gutzler, T., Alexandrov, S.A., Sampson, D.D.: Opt. Express 17, 7873 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Adibi, A., Buse, K., Psaltis, D.: Phys. Rev. A 63, 023813 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, S.H., Gan, S., Cao, D.Z., Xiong, J., Zhang, X.D., Wang, K.G.: Phys. Rev. A 80, 031805 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Luo, K.H., Wen, J.M., Chen, X.H., Liu, Q., Xiao, M., Wu, L.A.: Phys. Rev. A 80, 043820 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Liu, Y.C., Kuang, L.M.: Phys. Rev. A 83, 053808 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Talbot, H.F.: Philos. Mag. 9, 401 (1836)Google Scholar
  9. 9.
    Wen, J.M., Du, S.W., Chen, H.Y., Xiao, M.: Appl. Phys. Lett. 98, 081108 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Ling, H.Y., Li, Y.Q., Xiao, M.: Phys. Rev. A 57, 1338 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    Mitsunaga, M., Imoto, N.: Phys. Rev. A 59, 4773 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    Harris, S.E., Field, J.E., Imamoǧlu, A.: Phys. Rev. Lett. 64, 1107 (1990)Google Scholar
  13. 13.
    Boller, K.J., Imamoglu, A., Harris, S.E.: Phys. Rev. Lett 66, 2593 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Rev. Mod. Phys. 77, 633 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    Qiu, T.H., Yang, G.J., Bian, Q.: Euro. Phys. Lett. 101, 44004 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Goodman, J.W.: Introduction to Fourier Optics. McGraw-Hill, New York (1968)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tian-Hui Qiu
    • 1
  • Min Xie
    • 2
  • Hong-Yang Ma
    • 1
  • Chun-Hong Zheng
    • 1
  • Li-Bo Chen
    • 1
  1. 1.School of ScienceQingdao University of TechnologyQingdaoPeople’s Republic of China
  2. 2.College of Physics and Communication Electronics, and Center for Quantum Science and TechnologyJiangxi Normal UniversityNanchangPeople’s Republic of China

Personalised recommendations