International Journal of Theoretical Physics

, Volume 55, Issue 4, pp 2089–2096 | Cite as

Decoherence of Two-qubits Coupled with Reservoirs Studied with New Ket-Bra Entangled State Method

  • Yi-Chong Ren
  • Hong-Yi Fan


For the first time we define a so-called Ket-Bra Entangled State (KBES) for two-qubits coupled with reservoirs by introduce an extra fictitious mode vector, and convert the corresponding master equation into Schrödinger-like equation by virtue of this state. Via this approach we concisely obtain the dynamic evolution of two uncoupled qubits each immersed in local thermal noise. Based on this, the decoherence evolution for the extended Werner-like states is derived and how purity and temperature influence the concurrence is analyzed. This KBES method may also be applied to tackling master equations of limited atomic level systems.


Ket-Bra entangled state Schrödinger-like equation Master equation Decoherence and concurrence 


  1. 1.
    Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, pp 353–394. Cambridge, England (2002)Google Scholar
  2. 2.
    Breuer, H.P.: The Theory of Open Quantum System, pp 219–278. Oxford University, Oxford (2002)Google Scholar
  3. 3.
    Mintert, F., Carvalho, A.R.R., Kuś, M., Buchleitner, A.: Measures and dynamics of entangled states. Phys. Rep. 415, 207–259 (2005)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    lagmago Kamta, G., Starace, A.F.: Anisotropy and magnetic field effects on the entanglement of a two qubit Heisenberg XY chain. Phys. Rev. Lett. 88, 107901 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    López, C.E., Romero, G., Lastra, F., Solano, E., Retamal, J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008)CrossRefGoogle Scholar
  6. 6.
    Derkacz, Ł., Jakóbczyk, L.: Quantum interference and evolution of entanglement in a system of three-level atoms. Phys. Rev. A 74, 032313 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Ali, M.: Distillability sudden death in qutrit–qutrit systems under amplitude damping. J. Phys. B: At. Mol. Opt. Phys. 43, 045504 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Fan, H.Y., Fan, Y.: New representation of thermal states in thermal field dynamics. Phys. Lett. A 246, 242 (1998)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fan, H.Y., Gao, W.B.: Solving Laguerre-Gauss mode eigenvectors and eigenfunctions in entangled state representation. Commun. Theor. Phys. 47, 611 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Fan, H.-y., Hu, L.-y.: Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach. Mod. Phys. Lett. B 22, 2435 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007)MathSciNetMATHGoogle Scholar
  14. 14.
    Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.University of Science and Technology of ChinaHefeiChina

Personalised recommendations