International Journal of Theoretical Physics

, Volume 55, Issue 4, pp 1977–1987 | Cite as

The Improved Evolution Paths to Speedup Quantum Evolution

  • Yong He
  • Yun Deng
  • Ming-Xing Luo


The quantum adiabatic evolution is very important for quantum mechanics and applied in quantum information processing to solve the difficult problem. The traditional quantum adiabatic algorithms use the linear interpolating to construct quantum evolution paths. We construct special evolution paths to speedup quantum evolutions. By choosing state-dependent correlations some constant time evolution paths may be generated. This result is very useful quantum adiabatic simulations.


Quantum adiabatic evolution Linearly interpolating Evolution path 



This work is supported by the National Natural Science Foundation of China (Nos.61303039, 61272514) and the Fundamental Research Funds for the Central Universities (No.2682014CX095).


  1. 1.
    Farhi, E., Goldstone, J., Gutmann, S., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Mizel, A., Lidar, D.A., Mitchell, M.: Simple Proof of Equivalence between Adiabatic Quantum Computation and the Circuit Model. Phys. Rev. Lett. 99, 070502 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50, 755–787 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999)MATHGoogle Scholar
  5. 5.
    Hogg, T.: Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67(02), 2314 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Latorre, J.I., Orus, R.: Adiabatic quantum computation and quantum phase transitions. Phys. Rev. A 69(06), 2302 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jansen, S., Ruskai, M.B., Seiler, B.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 2111 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Hamma, A., Lidar, D.A.: Adiabatic approximation fr many body systems and quantum computation, arXiv:quant-ph/008040604 (2008)
  9. 9.
    Choi, V.: Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems. Quantum Infor. Comput. 11, 638–648 (2011)MathSciNetMATHGoogle Scholar
  10. 10.
    Zhao, Y.: Reexamination of the quantum adiabatic theorem. Phys. Rev. A 77(03), 2109 (2008)ADSGoogle Scholar
  11. 11.
    Comparat, D.: Genaral conditions for a quantum adiabatic evolution. Phys. Rev. A 80(01), 2106 (2009)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Tong, D.M.: Quantitative conditions is necessary in quaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 120401, 104 (2010)Google Scholar
  13. 13.
    Farhi, E, Goldstone, J, Gutmann, S.: Quantum adiabatic evolution algorithms with different paths. arXiv:quant-ph/0208135
  14. 14.
    Van Dam, W., Mosca, M, Vazirani, U.: How powerful is adiabatic quantum computation?. In: Proceedings of the 42th Ann. Symp. Foundations of Computer Science (FOCS01), pp 279–287. IEEE Computer Society, Las Vegas (2001)Google Scholar
  15. 15.
    Van Dam, W, Vazirani, U: Limits on quantum adiabatic optimization. 5th Workshop on Quantum Information Processing (QIP 2002) (2001)Google Scholar
  16. 16.
    Choi, V.: Avoid first order quantum phase transition by changing problem Hamiltonians. arXiv:quant-ph/1010 (1220)
  17. 17.
    Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Nat. Acad. Sci. USA 107, 12446–12450 (2010)ADSCrossRefMATHGoogle Scholar
  18. 18.
    Rezakhani, A.T., Kou, W.J., Hamma, A., et al.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsChongqing University of Science and TechonologyChongqingChina
  2. 2.School of Computer ScienceSichuan University of Science & EngineeringZigongChina
  3. 3.Information Security and National Computing Grid LaboratorySouthwest Jiaotong UniversityChengduChina

Personalised recommendations