Skip to main content
Log in

The Improved Evolution Paths to Speedup Quantum Evolution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum adiabatic evolution is very important for quantum mechanics and applied in quantum information processing to solve the difficult problem. The traditional quantum adiabatic algorithms use the linear interpolating to construct quantum evolution paths. We construct special evolution paths to speedup quantum evolutions. By choosing state-dependent correlations some constant time evolution paths may be generated. This result is very useful quantum adiabatic simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Farhi, E., Goldstone, J., Gutmann, S., et al.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–476 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Mizel, A., Lidar, D.A., Mitchell, M.: Simple Proof of Equivalence between Adiabatic Quantum Computation and the Circuit Model. Phys. Rev. Lett. 99, 070502 (2007)

    Article  ADS  Google Scholar 

  3. Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. SIAM Rev. 50, 755–787 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Messiah, A.: Quantum Mechanics. Dover Publications, New York (1999)

    MATH  Google Scholar 

  5. Hogg, T.: Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67(02), 2314 (2003)

    Article  ADS  Google Scholar 

  6. Latorre, J.I., Orus, R.: Adiabatic quantum computation and quantum phase transitions. Phys. Rev. A 69(06), 2302 (2004)

    Article  MathSciNet  Google Scholar 

  7. Jansen, S., Ruskai, M.B., Seiler, B.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48(10), 2111 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamma, A., Lidar, D.A.: Adiabatic approximation fr many body systems and quantum computation, arXiv:quant-ph/008040604 (2008)

  9. Choi, V.: Different adiabatic quantum optimization algorithms for the NP-complete exact cover and 3SAT problems. Quantum Infor. Comput. 11, 638–648 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Zhao, Y.: Reexamination of the quantum adiabatic theorem. Phys. Rev. A 77(03), 2109 (2008)

    ADS  Google Scholar 

  11. Comparat, D.: Genaral conditions for a quantum adiabatic evolution. Phys. Rev. A 80(01), 2106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tong, D.M.: Quantitative conditions is necessary in quaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 120401, 104 (2010)

    Google Scholar 

  13. Farhi, E, Goldstone, J, Gutmann, S.: Quantum adiabatic evolution algorithms with different paths. arXiv:quant-ph/0208135

  14. Van Dam, W., Mosca, M, Vazirani, U.: How powerful is adiabatic quantum computation?. In: Proceedings of the 42th Ann. Symp. Foundations of Computer Science (FOCS01), pp 279–287. IEEE Computer Society, Las Vegas (2001)

  15. Van Dam, W, Vazirani, U: Limits on quantum adiabatic optimization. 5th Workshop on Quantum Information Processing (QIP 2002) (2001)

  16. Choi, V.: Avoid first order quantum phase transition by changing problem Hamiltonians. arXiv:quant-ph/1010 (1220)

  17. Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Nat. Acad. Sci. USA 107, 12446–12450 (2010)

    Article  ADS  MATH  Google Scholar 

  18. Rezakhani, A.T., Kou, W.J., Hamma, A., et al.: Quantum adiabatic brachistochrone. Phys. Rev. Lett. 103, 080502 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos.61303039, 61272514) and the Fundamental Research Funds for the Central Universities (No.2682014CX095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Deng, Y. & Luo, MX. The Improved Evolution Paths to Speedup Quantum Evolution. Int J Theor Phys 55, 1977–1987 (2016). https://doi.org/10.1007/s10773-015-2838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2838-1

Keywords

Navigation