Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1930–1935 | Cite as

Solution of the Master Equation in the Amplitude Damping Model Under the Action of Linear Resonance Force

  • Lu Dao-ming
Article
  • 107 Downloads

Abstract

The amplitude damping model master equations of density operators under the action of linear resonance force can be concisely solved by virtue of thermo entangled state representation and the technique of integration within an ordered product of operators. We obtain the infinitive operator-sum representation of density operators. This approach may also be effective to treat other master equations. Further, the evolution of the coherent state in this model is discussed. The results show that the coherent state maintains its original coherence character in the amplitude damping model under the action of linear resonance force.

Keywords

Quantum optics Linear resonance force Amplitude damping model Solution of master equation 

Notes

Acknowledgments

This work is supported by the Natural Science Foundation of Fujian Provice of China Under Grant No.2015J01020.

References

  1. 1.
    Tan, X., Zhang, C.Q., Xia, Y.J.: Acta Phys. Sin. 55, 2263 (2006) (in Chinese)Google Scholar
  2. 2.
    Wang, C.Z., Fang, M.F.: Acta Phys. Sin. 51, 1989 (2002) (in Chinese)Google Scholar
  3. 3.
    Xu, X.X., Yuan, H.C., Hu, L.Y.: Acta Phys. Sin. (Chinese) 59, 4661 (2010)Google Scholar
  4. 4.
    Lu, H.X., Li, Y.D.: Chin. Phys. B 18, 40 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Ricardo, W., Nadja, K.B., Peter, V.L.: Phys. Rev. A 81, 062344 (2010)CrossRefGoogle Scholar
  6. 6.
    Pan, C.N., Zhao, X.H., Yang, D.W., et al.: Acta Phys. Sin. (Chinese) 59, 6814 (2010)Google Scholar
  7. 7.
    Wen, H.Y., Yang, Y., Wei, L.F.: Acta Phys. Sin. (Chinese) 61, 184206 (2012)Google Scholar
  8. 8.
    Sohbi, A., Zaquine, I., Diamanti, E., et al.: Phys. Rev. A 91, 022101 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chaves, R., Cavalcanti, D., Aolita, L., et al.: Phys. Rev. A 86, 012108 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Zhang, H.L., Jia, F., Xu, X.X., et al.: Int. J. Theor. Phys. 51, 3330 (2012)MATHCrossRefGoogle Scholar
  11. 11.
    Da, C., Chen, Q.F., Fan, H.Y.: Int. J. Theor. Phys. 53, 4372 (2014)MATHCrossRefGoogle Scholar
  12. 12.
    Fan, H.Y., Hu, L.Y.: Commun. Theor. Phys. 51, 729 (2009)ADSMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Chen, F., Fan, H.Y.: Chin. Phys. B 23, 030304 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Seyed, M.A., Mohammad, R.B.: Chin. Phys. B 23, 090303 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    Liu, T.K., Shan, C.J., Liu, J.B., et al.: Chin. Phys. B. 23, 030303 (2014)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, C.C., Fan, H.Y.: Chin. Phys. Lett. 27, 110302 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Ye, Q., Chen, Q.F., Fan, H.Y.: Acta Phys. Sin. (Chinese) 61, 210301 (2012)Google Scholar
  18. 18.
    Hu, L.Y., Wang, Q., Wang, Z.S., et al.: Int. J. Theor. Phys. 51, 331 (2012)MATHCrossRefGoogle Scholar
  19. 19.
    Fan, H.Y., Fan, Y.: Phys. Lett. A 282, 269 (2001)ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Mechanic and Electronic EngineeringWuyi UniversityWuyishanPeople’s Republic of China

Personalised recommendations