International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1882–1889 | Cite as

Charged Fermions Tunnel from the Kerr-Newman Black Hole Influenced by Quantum Gravity Effects



Taking into account quantum gravity effects, we investigate the tunnelling radiation of charged fermions in the Kerr-Newman black hole. The result shows that the corrected Hawking temperature is determined not only by the parameters of the black hole, but also by the energy, angular momentum and mass of the emitted fermion. Meanwhile, an interesting found is that the temperature is affected by the angle 𝜃. The quantum gravity correction slows down the evaporation.


Charged fermions Generalized uncertainty principle Tunnelling radiation Remnants 



This work is supported by the National Natural Science Foundation of China (Grant No. 11205125), by Sichuan Province Science Foundation for Youths (Grant No. 2014JQ0040) and by the Innovative Research Team in China West Normal University (Grant No. 438061).


  1. 1.
    Hawking, S.W: Particle creation by black holes. Math. Phys. 43, 199 (1975)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Kraus, P., Wilczek, F.: Self-interaction correction to black hole radiance. Nucl. Phys. B 433, 403 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Parikh, M.K., Wilczek, F.: Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042 (2000)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhang, J.Y., Zhao, Z: Hawking radiation of charged particles via tunneling from the Reissner-Nordstrom black hole. JHEP 10, 055 (2005)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhang, J.Y., Zhao, Z.: Charged particles’ tunnelling from the Kerr-Newman black hole. Phys. Lett. B 638, 110 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Jiang, Q.Q., Wu, S.Q., Cai, X.: Hawking radiation as tunneling from the Kerr and Kerr-Newman black holes. Phys. Rev. D 73, 064–003 (2006). Erratum-ibid. D 73 (2006) 069902MathSciNetGoogle Scholar
  7. 7.
    Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: Hawking radiation as tunneling for extremal and rotating black holes. JHEP 05, 014 (2005)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kerner, R., Mann, R.B.: Fermions tunnelling from black holes. Class. Quant. Grav. 25, 095014 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kerner, R., Mann, R.B.: Charged fermions tunnelling from Kerr-Newman black holes. Phys. Lett. B 665, 277 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Li, R., Ren, J.R.: Dirac particles tunneling from BTZ black hole. Phys. Lett. B 661, 370 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, D.Y., Jiang, Q.Q., Zu, X.T.: Fermions tunnelling from the charged dilatonic black holes. Class. Quantum Grav. 25, 205022 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Di Criscienzo, R., Vanzo, L.: Fermion tunneling from dynamical horizons. Eur. Phys. Lett. 82, 60001 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Konishi, K., Paffuti, G., Provero, P.: Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276 (1990)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Amati, D., Ciafaloni, M., Veneziano, G.: Can spacetime be probed below the string size? Phys. Lett. B 216, 41 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Townsend, P.K: Small-scale structure of spacetime as the origin of the gravitational constant. Phys. Rev. D 15, 2795 (1977)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Kempf, A., Mangan, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Adler, R.J., Chen, P., Santiago, D.I.: The generalized uncertainty principle and black hole remnants. Gen. Rel. Grav. 33, 2101 (2001). arXiv: gr-qc/0106080 ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kim, Y.M., Park, Y.J.: Entropy of the Schwarzschild black hole to all orders in the Planck length. Phys. Lett. B 655, 172 (2007). arXiv: 0707.2128[qr-qc]ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bina, A., Jalalzadeh, S., Moslehi, A.: Quantum black hole in the generalized uncertainty principle framework. Phys. Rev. D 81, 023–528 (2010). arXiv: 1001.0861[[qr-qc]]MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xiang, L., Wen, X.Q.: Black hole thermodynamics with generalized uncertainty principle. JHEP 0910, 046 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Nozari, K., Saghafi, S.: Natural cutoffs and quantum tunneling from black hole horizon. JHEP 1211, 005 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Chen, D.Y., Jiang, Q.Q., Wang, P., Yang, H.: Remnants, fermions’ tunnelling and effects of quantum gravity. JHEP 1311, 176 (2013)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Chen, D.Y., Wu, W.H., Yang, H.: Observing remnants by fermions’ tunneling. JCAP 03, 036 (2014)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Akhmedov, E.T., Akhmedova, V., Pilling, T., Singleton, D.: Thermal radiation of various gravitational backgrounds. Int. J. Mod. Phys. A 22, 1705 (2007)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Akhmedov, E.T., Akhmedova, V., Singleton, D.: Hawking temperature in the tunneling picture. Phys. Lett. B 642, 124 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Akhmedova, V., Pilling, T., de Gill, A., Singleton, D.: Temporal contribution to gravitational WKB-like calculations. Phys. Lett. B 666, 269 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Akhmedov, E.T., Pilling, T., Singleton, D.: Subtleties in the quasi-classical calculation of Hawking radiation. Int. J. Mod. Phys. D 17, 2453 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Chowdhury, B.D.: Problems with tunneling of thin shells from black holes. Pramana 70, 593 (2008)CrossRefGoogle Scholar
  29. 29.
    Chen, D.Y., Wu, H.W., Yang, H., Yang, S.Z.: Effects of quantum gravity on black holes. Int. J. Mod. Phys. A 29, 1430054 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Wang, P., Yang, H., Ying, S.X.: Black hole radiation with modified dispersion relation in tunneling paradigm: free-fall frame. arXiv: 1505.04568[gr-qc]
  31. 31.
    Wang, P., Yang, H.: Black hole radiation with modified dispersion relation in tunneling paradigm: static frame. arXiv: 1505.03045[gr-qc]
  32. 32.
    Mu, B.R., Wang, P., Yang, H.: Minimal length effects on tunnelling from wpherically wymmetric black holes. Adv. High Energy Phys. 2015, 898–916 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsChina West Normal UniversityNanchongChina

Personalised recommendations