Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1854–1870 | Cite as

On the Non-k-Separability of Dicke Class of States and N-Qudit W States

  • N. Ananth
  • M. Senthilvelan
Article

Abstract

In this paper, we present the separability criteria to identify non-k-separability and genuine multipartite entanglement in mixed multipartite states using elements of density matrices. Our criteria can detect the non-k-separability of Dicke class of states, anti W states and mixtures thereof and higher dimensional W class of states. We then investigate the performance of our criteria by considering N-qubit Dicke states with arbitrary excitations added with white noise and mixture of N-qudit W state with white noise. We also study the robustness of our criteria against white noise. Further, we demonstrate that our criteria are experimentally implementable by means of local observables such as Pauli matrices and generalized Gell-Mann matrices.

Keywords

Non-k-separability Genuine multipartite entanglement Dicke state W state 

References

  1. 1.
    Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Mod. Phys 81, 865 (2009)ADSMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Gühne, O., Tóth, G.: Phys. Rep 474, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Gühne, O., Tóth, G., Briegel, H.J.: New J. Phys. 7, 229 (2005)CrossRefGoogle Scholar
  4. 4.
    Novo, L., Moroder, T., Gühne, O.: Phys. Rev. A 88, 012305 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Dicke, R.H.: Phys. Rev. 93, 99 (1954)ADSMATHCrossRefGoogle Scholar
  6. 6.
    Tóth, G.: J. Opt. Soc. Am. B 24, 275 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Bergmann, M., Gühne, O.: J. Phys. A 46, 385304 (2013)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Häffner, H., et al.: Nature (London) 438, 643 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Kiesel, N., Schmid, C., Tóth, G., Solano, E., Weinfurter, H.: Phys. Rev. Lett. 98, 063604 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Prevedel, R., Cronenberg, G., Tame, M.S., Paternostro, M., Walther, P., Kim, M.S., Zeilinger, A.: Phys. Rev. Lett. 103, 020503 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Wieczorek, W., Krischek, R., Kiesel, N., Michelberger, P., Tóth, G., Weinfurter, H.: Phys. Rev. Lett. 103, 020504 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Linington, I.E., Vitanov, N.V.: Phys. Rev. A 77, 010302(R) (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Toyoda, K., Watanabe, T., Kimura, T., Nomura, S., Haze, S., Urabe, S.: Phys. Rev. A 83, 022315 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    Gühne, O., Bodoky, F., Blaauboer, M.: Phys. Rev. A 78, 060301(R) (2008)CrossRefGoogle Scholar
  15. 15.
    Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Phys. Rev. A 59, 156 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    Hillery, M., Bužek, V., Berthiaume, A.: Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Huber, M., Erker, P., Schimpf, H., Gabriel, A., Hiesmayr, B.: Phys. Rev. A 83, 040301(R) (2011)ADSCrossRefGoogle Scholar
  18. 18.
    Duan, L-M.: Phys. Rev. Lett. 107, 180502 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Lücke, B., Peise, J., Vitagliano, G., Arlt, J., Santos, L., Tóth, G., Klempt, C.: Phys. Rev. Lett. 112, 155304 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Gao, T., Yan, F., van Enk, S.J.: Phys. Rev. Lett. 112, 180501 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Ananth, N., Chandrasekar, V.K., Senthilvelan, M.: Eur. Phys. J. D 69, 56 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    Gabriel, A., Hiesmeyr, B.C., Huber, M.: Quantum Inf. Comput 10, 0829 (2010)Google Scholar
  23. 23.
    Agrawal, P., Pati, A.: Phys. Rev. A 74, 062320 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    Zheng, S-B.: Phys. Rev. A 74, 054303 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    D’Hondt, E., Panangaden, P.: Quantum Inf. Comput. 6, 173 (2006)MATHMathSciNetGoogle Scholar
  26. 26.
    Gao, T., Hong, Y., Lu, Y., Yan, F.: Europhys. Lett. 104, 20007 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Gühne, O., Seevinck, M.: New J. Phys. 12, 053002 (2010)CrossRefGoogle Scholar
  28. 28.
    Gao, T., Hong, Y.: Eur. Phys. J. D 61, 765 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Huber, M., Mintert, F., Gabriel, A., Hiesmayr, B.C.: Phys. Rev. Lett. 104, 210501 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    Kim, J.S., Sanders, B.C.: J. Phys. A 41, 495301 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Seevinck, M., Uffink, J.: Phys. Rev. A 78, 032101 (2008)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Chiurib, A., Vallone, G., Bruno, N., Macchiavello, C., Bruß, D., Mataloni, P.: Phys. Rev. Lett. 105, 250501 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Gühne, O., Hyllus, P.: Int. J. Theor. Phys. 42, 1001 (2003)MATHCrossRefGoogle Scholar
  34. 34.
    Gühne, O., Lu, C-Y., Gao, W-B., Pan, J-W.: Phys. Rev. A 76, 030305(R) (2007)CrossRefGoogle Scholar
  35. 35.
    Gao, T., Hong, Y.: Phys. Rev. A 82, 062113 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Bertlmann, R.A., Krammer, P.: arXiv:quant-ph/07061743
  37. 37.
    Zhao, H., Fei, S-M., Fan, J., Wang, Z-X.: Int. J. Quan. Inf. 12, 1450013 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Nonlinear Dynamics, School of PhysicsBharathidasan UniversityTiruchirappalli -India

Personalised recommendations