Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 3, pp 1558–1567 | Cite as

A Novel Quantum Blind Signature Scheme with Four-Particle Cluster States

  • Ling Fan
Article

Abstract

In an arbitrated quantum signature scheme, the signer signs the message and the receiver verifies the signature’s validity with the assistance of the arbitrator. We present an arbitrated quantum blind signature scheme by measuring four-particle cluster states and coding. By using the special relationship of four-particle cluster states, we cannot only support the security of quantum signature, but also guarantee the anonymity of the message owner. It has a wide application to E-payment system, E-government, E-business, and etc.

Keywords

Blind signature Quantum cryptography Cluster states 

Notes

Acknowledgments

This work is supported by NSFC (Grant Nos. 61272057, 61170270), Beijing Higher Education Young Elite Teacher Project (Grant Nos. YETP0475, YETP0477).

References

  1. 1.
    Gottesman, D., Chuang, I.: Quantum digital signatures, arXiv:quant-ph/0105032v2 (2001)
  2. 2.
    Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87, 167902 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Buhrman, H., Crepeau, C., Gottesman, D., et al.: Authentication of quantum messages. pp. 449–458. IEEE Computer Society Press, Washington DC (2002)Google Scholar
  4. 4.
    Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79, 054307 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Hwang, T., Luo, Y.P., Chong, S.K., Chong S.K.: Comment on: security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 85, 056301 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    Cai, Q.Y.: The “Ping-Pong” Protocol Can Be Attacked without Eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H.: Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Zhang, K.J., Qin, S.J., Sun, Y., Song, T.T., Su, Q.: Reexamination of arbitrated quantum signature: The impossible and the possible. Quantum Inf. Proc. 12(7), 3127–3141 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Zhang, K.J., Li, D., Su, Q.: Security of the arbitrated quantum signature protocols revisited. Phys. Scr. 89, 015102 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Proc. 12(8), 2655–2669 (2013)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Yang, Y.G.: Multi-proxy quantum group signature scheme with threshold shared verification. Chin. Phys. B 17, 415 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    Yang, Y.G., Wen, Q.Y.: Threshold proxy quantum signature scheme with threshold shared verification. Sci. Chin. Ser. G: Phys. Mech. Astron. 51, 1079C1088 (2008)MATHGoogle Scholar
  19. 19.
    Yang, Y.G., Wang, Y., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Scalable arbitrated quantum signature of classical messages with multi-signers. Commun. Theor. Phys. 54, 84 (2010)ADSCrossRefMATHGoogle Scholar
  20. 20.
    Yang, Y.G., Wen, Q.Y.: Arbitrated quantum signature of classical messages against collective amplitude damping noise. Opt. Commun. 283, 3198–3201 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, T. Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19, 060307 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, T.Y., Wei, Z.L.: One-time proxy signature based on quantum cryptography. Quantum Inf. Proc. (2012). doi: 10.1007/s11128-011-0258-6 ADSMathSciNetGoogle Scholar
  23. 23.
    Chaum, D.: Elections with unconditionally-secret ballots and disruption equivelent to breaking RAS. Advances in cryptology. In: Proceedings of Euro-Crypto88, p 177C189. Springer, Berlin (1988)Google Scholar
  24. 24.
    Brands, S.: Untraceble off-line cash in wallet with observers. Advances in cryptology. In: Proceeding of Crypto93, p 302C318. Springer, Berlin (1994)Google Scholar
  25. 25.
    Wang, T.Y., Cai, X.Q., Zhang, J.Z.: Off-line e-cash system with multiple banks based on elliptic curve. Comput. Eng. Appl. 33(15), 155C157 (2007)Google Scholar
  26. 26.
    Wen, X.J., Chen, Y.Z., Fang, J.B.: An inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549C558 (2013)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank E-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651C1657 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Harn, L.: Cryptanalysis of the blind signature based on the discrete logarithm. Electron. Lett. 31(14), 1136C1137 (1995)CrossRefGoogle Scholar
  29. 29.
    Fan, C., Lei, C.: Efficient blind signature scheme based on quadratic residues. Electron. Lett. 32(9), 811C813 (1996)Google Scholar
  30. 30.
    Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    Shen, D.-S., Ma, W.-P., Wang, L.-l.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process 13, 2313–2324 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518C527 (2013)MathSciNetGoogle Scholar
  33. 33.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE international conference on computers, systems, and signal processing, pp. 175–179. IEEE Press, New York (1984)Google Scholar
  34. 34.
    Ekert, A.K.: Quantum cryptography based on bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Bennett, C.H., Brassard, G., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and rotations. Phys. Lett. A 349, 53–58 (2006)ADSCrossRefMATHGoogle Scholar
  38. 38.
    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the bradler-dusek protocol. Quantum Inf. Comput. 7, 329 (2007)MathSciNetMATHGoogle Scholar
  42. 42.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)ADSCrossRefMATHGoogle Scholar
  45. 45.
    W’ojcik, A.: Eavesdropping on the Ping-Pong quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    W’ojcik, A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam”. Phys. Lett. A 360, 748 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Security of quantum digital signatures for classical messages Tian-Yin Wang, Xiao-Qiu Cai, Yan-Li Ren, Rui-Ling Zhang:Security of quantum digital signatures for classical messages. Scientific Reports 5, 9231 (2015)Google Scholar
  51. 51.
    Wang, T.-Y., Cai, X.-Q., Zhang, R.-L.: Security of a sessional blind signature based on quantum cryptograph. Quantum Inf. Process 13, 1677C1685 (2014)MathSciNetMATHGoogle Scholar
  52. 52.
    Cai, X.-Q., Zheng, Y.-H., Zhang, R.-L.: Cryptanalysis of a batch proxy quantum blind signature scheme. Int. J. Theor. Phys. 53, 3109C3115 (2014)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.School of Ethnic EducationBeijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations