Advertisement

International Journal of Theoretical Physics

, Volume 55, Issue 2, pp 1274–1284 | Cite as

Dynamics of Correlations in the Presences of Intrinsic Decoherence

  • Nour Zidan
Article

Abstract

The dynamics of a mixed spin system governed by XXZ model in additional to an intrinsic decoherence is investigated. The behavior of quantum correlation and the degree of entanglement between the two subsystems is quantified by using measurement-induced disturbance and the negativity, respectively. It is shown that, the phenomena of long-lived entanglement appears for larger values of intrinsic decoherence parameters. The degree of entanglement and quantum correlation depend on the dimensions of subsystems which are pass through the external field and the initial states setting. We show that the negativity for some initial classes is more robust than the measurement-induced disturbance, while for some other initial classes the quantum correlations are more robust than entanglement.

Keywords

Negativity Measurement-induced disturbance Mixed spin Intrinsic decoherence 

References

  1. 1.
    Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2008)MATHGoogle Scholar
  2. 2.
    Barnett, S.M.: Quantum Information. Oxford University Press, Oxford (2009)MATHGoogle Scholar
  3. 3.
    Metwally, N.: Entangled network and quantum communication. Phys. Lett. A 375, 4268 (2011)ADSCrossRefMATHGoogle Scholar
  4. 4.
    Giraud, O., Georgeot, B., Shepelynasky, D.L.: Quantum computing of delocalization in small-world networks. Phys. Rev. E 72, 036303 (2005)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Metwally, N.: Entanglement routers via a wireless quantum network based on arbitrary two qubit systems. Phys. Scr. 89, 125103 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824 (1996)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Metwally, N.: More efficient purification protocol. Phys. Rev. A 66, 054302 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Metwally, N., Obada, A.-S.F.: More efficient Purifying scheme via Controlled-Controlled NOT gate. Phys. Lett. A 352, 45 (2006)ADSCrossRefMATHGoogle Scholar
  10. 10.
    Huang, P., Zhu, J., He, G., Zeng, G.: Study on the security of discrete-variable quantum key distribution over non-Markovian channels. J. Phys. B: At. Mol. Opt. Phys. 45, 135501 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    Hussain, M.I., Ikram, M.: Entanglement engineering of a close bipartite atomic system in a dissipative environment. J. Phys. B: At. Mol. Opt. Phys. 45, 115503 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    Metwally, N.: Information loss in local dissipation environments. Int. J. Theor. Phys. 49, 1571 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Yu, T., Eberly, J.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Yu, T., Eberly, J.: Sudden death of entanglement: Classical noise effects. Opt. Commun. 264, 393 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    Metwally, N.: Quantum dense coding and dynamics of information over Bloch channels. J. Phys. A: Math. Theor. 44, 055305 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Abdel-Aty, M., Yu, T.: Entanglement sudden birth in two three–level trapped ions interacting with a time-dependent laser field. J. Phys. B: At. Mol. Opt. Phys. 41, 235503 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Ban, M., Kitajima, A., Shibata, F.: Decoherence of entanglement in the Bloch channel. J. Phys. A: Math. Gen. 38, 4235 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ban, M., Kitajima, A.-S., Shibata, F.: Decoherence of quantum information in the non-Markovian qubit channel. J. Phys. A: Math. Gen. 38, 7161 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Metwally, N.: Abrupt decay of entanglement and quantum communication through noise channels. Quantum Inf. Process 9, 429 (2010)Google Scholar
  20. 20.
    Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401 (1991)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hu, M.L., Li Lian, H.: State transfer in intrinsic decoherence spin channels. Eur. Phys. J. D 55, 711 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    Ju´arez-Amaro, R., Escudero-Jim´enez, J.L., Moya-Cessa, H.: Intrinsic decoherence in the interaction of two fields with a two-level atom. Annalen der Physik 18, 454 (2009)ADSCrossRefMATHGoogle Scholar
  23. 23.
    Zhong, Y.P., Wang, Z. L., Wang, H., John, M., Martinis, M., Cleland, A.N.: Reducing the impact of intrinsic dissipation in a superconducting circuit by quantum error detection. Nat. Commun. 5, 3135 (2014)ADSGoogle Scholar
  24. 24.
    Guo, J.-L., H.-S. Song: Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scr. 78, 045002 (2008)ADSCrossRefMATHGoogle Scholar
  25. 25.
    Zidan, N.: Quantum teleportation via two-qubit Heisenberg XYZ chain. Can. J. Phys. 92, 406 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Yang, G.-H., Zhou, L.: Entanglement properties of a two-qubit, mixed-spin, Heisenberg chain under a nonuniform magnetic field. Phys. Scr. 78, 025703 (2008)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  30. 30.
    Song, L., Yang, G.-H.: Entanglement and measurement-induced disturbance about two-qubit Heisenberg XYZ model. Int. J. Theor. Phys. 53, 1985 (2014)CrossRefMATHGoogle Scholar
  31. 31.
    Shadman, Z., Kampermann, H., Macchiavello, C., Bruss, D.: Optimal super dense coding over noisy quantum channels. New J. Phys. 12, 073042 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Metwally, N.: Single and double changes of entanglement. J. Opt. Soc. Am. B 31, 691 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Zhang, J., Chen, L., Abdel-Aty, M., Chen, A.: Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime. Eur. Phys. J. D 66, 1 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    Liang, Q.: Quantum correlation in a two-qubit Heisenberg XX model under intrinsic decoherence. Commun. Theor. Phys. 60, 391 (2013)CrossRefGoogle Scholar
  35. 35.
    Xu, X.-B., Liu, J.M., Yu, P.-F.: Entanglement of a two-qubit anisotropic Heisenberg XYZ chain in nonuniform magnetic fields with intrinsic decoherence. Chin. Phys. B 17, 456 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceSohag UniversitySohagEgypt

Personalised recommendations