International Journal of Theoretical Physics

, Volume 55, Issue 2, pp 1241–1256 | Cite as

Dark Energy Models in f(R, T) Theory with Variable Deceleration Parameter



In this communication we have investigated Bianchi type-II dark energy (DE) cosmological models with and without presence of magnetic field in modified f(R, T) gravity theory as proposed by Harko et al. (Phys. Rev. D, 84, 024020, 2011). The exact solution of the field equations is obtained by setting the deceleration parameter q as a time function along with suitable assumption the scale factor \(a(t)= [sinh(\alpha t)]^{\frac {1}{n}}\), α and n are positive constant. We have obtained a class of accelerating and decelerating DE cosmological models for different values of n and α. The present study believes that the mysterious dark energy is the main responsible force for accelerating expansion of the universe. For our constructed models the DE candidates cosmological constant (Λ) and the EoS parameter (ω) both are found to be time varying quantities. The cosmological constant Λ is very large at early time and approaches to a small positive value at late time whereas the EoS parameters is found small negative at present time. Physical and kinematical properties of the models are discussed with the help of pictorial representations of the parameters. We have observed that our constructed models are compatible with recent cosmological observations.


Bianchi type-II space-time f(R, T) gravity theory Dark energy Variable deceleration parameter EoS parameter 



The author(s) are highly thankful to SLIET, Longowal and IUCAA, Pune for providing necessary research facilities . We are also grateful to the referees for their constructive comments and suggestions to improve this manuscript.

Compliance with Ethical Standards

The authors declare that they have no conflict of interest.


  1. 1.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    Riess, A.G., et al.: Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    Anderson, L., et al.: Mon. Not. R. Astron. Soc. 427, 3435 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    Hinshaw, G., et al.: Astrophys. J. Suppl. 208, 19 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    Suzuki, N., et al.: Astrophys. J. 746, 85 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Ade, P.A.R., et al.: Astron. J. 571, 16 (2014)Google Scholar
  8. 8.
    Martin, J.: Phys. Lett. 23, 1252 (2008)Google Scholar
  9. 9.
    Perlmutter. S., et al.: Nature 391, 51 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    Alam, U., et al.: Mon. Not. R. Astron. Soc. 354, 275 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Chiba, T., et al.: Phys. Rev. D 62, 02351 1 (2000)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Padamanabhan, T., Chaudhary, T.R.: Phys. Rev. D 66, 081301 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Padamanabhan, T.: Phys. Rep. 380, 235 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Bento, M.C., et al.: Phys. Rev. D 66, 043507 (2002)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Allemandi, G., et al.: Phys. Rev. D 72, 63505 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Akarsu, O., Kilinc, C.B.: Gen. Relat. Gravit 42, 119 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Akarsu, O., Kilinc, C.B.: Gen. Relat. Gravit. 42, 763 (2010)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Carroll, S.M., Hoffman, M.: Phys. Rev. D 68, 023509 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Ray, S., Rahaman, F., Mukhopadhyay, U., Sarkar, R.: arXiv: (2010)
  21. 21.
    Yadav, A.K., Rahaman, F., Ray, S.: Int. J. Theor. Phys. 50, 871 (2011)CrossRefMATHGoogle Scholar
  22. 22.
    Yadav, A.K., Yadav, L.: Int. J. Theor. Phys. 50, 218 (2011)CrossRefMATHGoogle Scholar
  23. 23.
    Pradhan, A., Amirhashchi, H.: Astrophys. J. 332, 441 (2011)MATHGoogle Scholar
  24. 24.
    Pradhan, A., Amirhashchi, H., Saha, B.: arXiv:[gr-qc] (2010)
  25. 25.
    Pradhan, A., Amirhashchi, H., Jaiswal, R.: Astrophys. Space Sci. 334, 249 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Amirhashchi, H., Pradhan, A., Saha, B.: Astrophys. Space Sci. 333, 295 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Pradhan, A., Amirhashchi, H., Saha, B.: Int. J. Theor. Phys. 50, 2923 (2011)CrossRefMATHGoogle Scholar
  28. 28.
    Sharma, N.K., Singh, J.K.: Int. J. Theor. Phys. 53, 2912 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Singh, J.K., Sharma, N.K.: Int. J. Theor. Phys. 53, 1424 (2014)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mishra, R.K., Pradhan, A., Chawla, C.: Int. J. Theor. Phys. 52, 2546 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Chawla, C., Mishra, R.K., Pradhan, A.: Rom. J. Phys. 58, 1000 (2013)MathSciNetGoogle Scholar
  32. 32.
    Chawla, C., Mishra, R.K., Pradhan, A.: Eur. Phys. J. Plus. 127, 137 (2012)CrossRefGoogle Scholar
  33. 33.
    Thorne, K.S.: Astrophys. J. 148, 51 (1967)ADSCrossRefGoogle Scholar
  34. 34.
    Cunha, J.V.: Phys. Rev. D 79, 047301 (2009)ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Knop, R.A., et al.: Astrophys. J. 598, 102 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    Clocchiatti, A., Schmidt, B.P., et al.: Astrophys. J. 642, 1 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsSant Longowal Institute of Engineering and TechnologyLongowalIndia
  2. 2.Department of Mathematics, Institute of Applied Sciences and HumanitiesG. L. A. UniversityMathuraIndia

Personalised recommendations